
Enabling Efficient Hypervisor-as-a-Service
Clouds with Ephemeral Virtualization

Dan Williams† Yaohui Hu‡ Umesh Deshpande∗ Piush K Sinha‡ Nilton Bila†

Kartik Gopalan‡ Hani Jamjoom†

†IBM T.J. Watson Research Center ‡Binghamton University ∗IBM Almaden Research Center

Abstract
When considering a hypervisor, cloud providers must bal-
ance conflicting requirements for simple, secure code bases
with more complex, feature-filled offerings. This paper in-
troduces Dichotomy, a new two-layer cloud architecture
in which the roles of the hypervisor are split. The cloud
provider runs a lean hyperplexor that has the sole task of
multiplexing hardware and running more substantial hy-
pervisors (called featurevisors) that implement features.
Cloud users choose featurevisors from a selection of lightly-
modified hypervisors potentially offered by third-parties in
an “as-a-service” model for each VM. Rather than running
the featurevisor directly on the hyperplexor using nested vir-
tualization, Dichotomy uses a new virtualization technique
called ephemeral virtualization which efficiently (and re-
peatedly) transfers control of a VM between the hyperplexor
and featurevisor using memory mapping techniques. Nest-
ing overhead is only incurred when the VM is accessed
by the featurevisor. We have implemented Dichotomy in
KVM/QEMU and demonstrate average switching times of
80 ms, two to three orders of magnitude faster than live VM
migration. We show that, for the featurevisor applications
we evaluated, VMs hosted in Dichotomy deliver up to 12%
better performance than those hosted on nested hypervisors,
and continue to show benefit even when the featurevisor ap-
plications run as often as every 2.5 seconds.

1. Introduction
Modern commodity hypervisors increasingly implement
complex hypervisor-level services, including rootkit de-
tection [37], live patching [7], intrusion detection [13],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VEE ’16, April 2–3, 2016, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3947-6/16/04. . . $15.00.
http://dx.doi.org/10.1145/2892242.2892254

!"#$!"#$%$&'()*+&,-'(+.'/01)+1)

2+3#0,0%4)

!%#$5&'6+/01'()

*+&,-'(+.'/01)

!&#$7'8*$)1$9,$6)

*+&,-'(+.'/01)

:-$9,)

;4"$&"($<0&)

=$',-&$>

*+90&)

?@)

:-$9,)

;4"$&"($<0&)

?@) ?@)=$',-&$>

*+90&)

?@)

!"#$%

&'$()'*%

+,*#$-.#/0%

&'$()'*%%

:-$9,)

?@)

;4"$&*+90&)

Figure 1: Splitting the role of the hypervisor with ephemeral
virtualization

high availability services [11], and a plethora of VM
introspection-enabled applications [12, 15, 24, 32, 34, 36].
As a result, when considering a hypervisor, cloud providers
must balance desires for small, secure, and stable code bases
with limited functionality (e.g., that simply multiplex hard-
ware) against rich service offerings with increased complex-
ity and potentially less security and stability. In this paper,
we explore a step towards a hypervisor-as-a-service model,
in which cloud providers can focus on maintaining a sim-
ple, secure and stable code base while simultaneously en-
couraging the further (potentially third-party) development
of hypervisor-level services.

We propose Dichotomy, a new cloud architecture in
which cloud providers have the best of both worlds. Di-
chotomy cleanly splits the role of the hypervisor into two
parts: the hyperplexor and featurevisor. The hyperplexor, run
by the cloud provider, is a small, secure, and stable hypervi-
sor designed solely to multiplex physical hardware and sup-
port featurevisors. A featurevisor is a lightly-modified, full-
fledged commodity hypervisor that runs on top of the hyper-
plexor, implements rich services, and performs management
of a guest VM. A cloud user can potentially choose a dif-
ferent featurevisor for each VM depending on the services
it requires. Furthermore, featurevisors may be developed by

many different (e.g., third-party) vendors and made available
in an as-a-service model (e.g., hypervisor-as-a-service).

Dichotomy achieves the division of responsibilities de-
scribed above through a new type of virtualization called
ephemeral virtualization. Ephemeral virtualization, depicted
in Figure 1, is similar to nested virtualization [5, 14, 16,
31, 47] in that it logically involves one hypervisor (the hy-
perplexor) managing a second hypervisor (the featurevisor),
which manages the guest VM. However, ephemeral virtual-
ization avoids the overhead of nested virtualization most of
the time by enabling the second-layer hypervisor (the fea-
turevisor) to voluntarily (and temporarily) relinquish con-
trol and management responsibilities of the guest VM to the
hyperplexor. At these times, performance becomes indistin-
guishable from a single layer of virtualization. The feature-
visor registers triggers with the hyperplexor in order to indi-
cate when it next needs control over the VM. There are many
featurevisor applications that do not need continuous control
over the guest and therefore can benefit from ephemeral vir-
tualization, including rootkit detection, guest patching, and
sample-based logging, profiling, monitoring, or analysis.

The relative performance of a VM workload running on
a featurevisor in Dichotomy (when compared to a tradi-
tional cloud or a hypervisor-as-a-service cloud using stan-
dard nested virtualization) is determined by four factors: (1)
the amount of time the featurevisor needs to be in control
of the VM to perform an action, (2) the frequency the fea-
turevisor needs to regain control of the VM to repeat an ac-
tion, (3) the overhead of nesting, and (4) the overhead of
switching the VM between running directly on the hyper-
plexor to running under the control of the featurevisor and
vice versa. The first two factors define the duty cycle for the
featurevisor and are featurevisor dependent. The third fac-
tor is featurevisor and VM workload dependent. The design
of Dichotomy centers around minimizing the fourth factor,
switching overhead, therefore augmenting the circumstances
in which ephemeral virtualization results in performance su-
perior to standard nested virtualization.

Dichotomy achieves low switching overhead by ensuring
that both the hyperplexor and featurevisor share an up-to-
date view of most of the guest VM state. Importantly, Di-
chotomy avoids memory copies by mapping guest memory
into both the hyperplexor and featurevisor. Remaining state
(e.g., VCPU and I/O) are migrated similarly to VM migra-
tion. We have implemented Dichotomy using KVM/QEMU
as the basis for both the featurevisor and hyperplexor, us-
ing timer-based triggers to switch between the two. We de-
scribe how to calculate—given a VM workload, featurevi-
sor application, and switching overhead—when ephemeral
virtualization outperforms nested virtualization. Further-
more, we have experimentally evaluated the performance of
guest VMs running several benchmark workloads under Di-
chotomy, using featurevisors that perform rootkit detection
and sample-based network monitoring. We found that Di-

!"

#$%"&'%"($)*(+,-" .)'*/%01)(%2"

',$3-,43$5"

6,$&$7,7("!8"

9+%9:*,3$&$5"

;"

&'%"

Figure 2: Duty cycles during ephemeral virtualization show-
ing VM execution time on the featurevisor (F) vs. the hyper-
plexor (H)

chotomy delivers up to 12% better VM performance than
nested virtualization. Dichotomy provides an improvement
even for featurevisor applications that seize control of VMs
as frequently as every 2.5 seconds. Switching VM control
between the hyperplexor and the featurevisor is fast, aver-
aging 80 milliseconds, because minimal amount of state is
copied between hypervisors. Furthermore, in some realis-
tic circumstances, the performance of VMs running on Di-
chotomy nears that of VMs on single-layer virtualization,
unlike VMs on nested virtualization.

2. Featurevisors and the Duty Cycle
There are many hypervisor-level features that already exist
in commodity hypervisors and many more that may appear
in the future. In this section, we define the duty cycle [3] in
the context of ephemeral virtualization and categorize spe-
cific hypervisor-level applications implemented in feature-
visors in terms of their duty cycle.

A featurevisor can be thought of as any hypervisor-level
service that exists in one or more commodity hypervisor (or
may exist in the future). Featurevisor services may run in
the control domain (e.g., Xen’s Domain 0) as user applica-
tions or in the hypervisor proper. For example, featurevisors
may be created to perform tasks as commonplace as VM
snapshots, to more unusual services such as root-kit detec-
tion [37] or live guest OS patching [7]

We define a featurevisor’s duty cycle as the fraction of
one period during which the featurevisor has control of the
guest. The period is the duration of time from one occur-
rence of a featurevisor gaining control over a VM to the
next occurrence, including the time that it voluntarily relin-
quishes control. A higher duty cycle implies that a feature-
visor spends more time exerting control over the VM.

Ignoring switching overhead for a moment, the duty cycle
of a featurevisor provides an indication of the performance
implications of ephemeral virtualization on a VM, as well as
the lower and upper bounds on performance. In the best case,
with a duty cycle of 0%, the VM always runs directly on
the hyperplexor; performance will match traditional single-
layer virtualization. With a duty cycle of 100%, the VM
always runs nested on the hypervisor and the hyperplexor;
performance will match nested virtualization.

Figure 2 shows the duty cycle for three example feature-
visors. A one time VM snapshot featurevisor has a low duty

!"#$%#&$'(%)

*+$,-)

./%-+0&)*+$,-)123)

4$0-+%$5/,(%)

2$%6(%7)

089(:)

;/<%09(:)

1:</:$)
3%/<<$%)

*+$,-)

,-0-$)

;/<%09(:)

1:</:$)

;$7(%");0:0<$7$:-)

Figure 3: Design Overview of Dichotomy

cycle because, despite the length of time the featurevisor
manages the VM to compute the snapshot, it will run di-
rectly on the hyperplexor for the majority of the time. Other,
more interesting featurevisors with similar duty cycles char-
acterized by infrequent actions include live guest OS patch-
ing [7], VM management [33, 42, 48] tools, and specialized
virtual devices that are irregularly accessed.

The second duty cycle shown in Figure 2 depicts sample-
based monitoring, in which a very inexpensive operation
(e.g., reading performance counters or statistics) occurs at
a regular interval. The performance of these featurevisors
depends highly on the period (or the frequency of the event).
Other example featurevisors that will exhibit this type of
pattern include sample-based event logging [25], root-kit
detection [37], near field monitoring [36], and other VM
introspection services [39, 43].

The final duty cycle shown in Figure 2 depicts a contin-
uous snapshot mechanism for high availability, such as Re-
mus [11]. In this case, the featurevisor maintains full control
of the VM at all times to track memory access, buffer output
and pause the VM during backup. The duty cycle is 100%,
meaning that ephemeral virtualization in this case is equiva-
lent to nested virtualization. Other example featurevisors of
this type include memory deduplication [2, 17, 44] and in-
trusion detection with interrupt logging [13].

We target featurevisors with a duty cycle less than 100%.
The goal of Dichotomy is to improve performance over pure
nested virtualization by switching control of a VM back and
forth between the hyperplexor and featurevisor. In the next
section, we describe how we design Dichotomy with a low
switching cost, which should be amortized away for realistic
applications by the time the VM spends on the hyperplexor.

3. Design
The overall architecture of Dichotomy is shown in Fig-
ure 3. A guest initially runs directly on the hyperplexor. Di-
chotomy’s memory management maps guest memory into
the featurevisor so that switching control over the guest from
hyperplexor to featurevisor (and vice versa) does not require
expensive migration of guest memory contents. It also en-
sures that modifications to the memory map are synchro-
nized as control over the guest changes.

!"#

$%&'(#

$%&'(#)*+#

)*+#,-%.(#

/-01.&2#

!"#

$%&'(#

3!45#
672(%-.#$%&'(#)*+#

!8#

672(%-.#)*+#

672(%-.#)*+#

+2-9#/-01.&2#:;-1<=#)*+#

)*+#,-%.(#

/-01.&2#

+2->9<.70&#

?<%0@&#

)*+#A-%.(#

)*+#A-%.(#

!8#)*+#

672(%-.#)*+#

><17B@-C<0#
)*+#A-%.(#

?5#-5#

Figure 4: Memory management in a) single layer virtualiza-
tion and b) standard nested virtualization

Control over the guest is switched between hyperplexor
and featurevisor via Dichotomy’s migration engine. The fea-
turevisor registers triggers with the hyperplexor, or events
upon which should gain control of the guest. Upon a trig-
ger event, the hyperplexor initiates migration of remaining
guest state to the featurevisor. The featurevisor performs an
action potentially scheduling or modifying the guest using
its own data structures and virtual hardware. It then migrates
the guest back to the hyperplexor.

In the simplest case, a hypervisor represents a guest VM
as a set of physical memory pages, a memory map that
translates guest-physical memory addresses to the addresses
of these physical memory pages, CPU context (e.g., regis-
ters and control structures) and I/O information. We do not
assume that the hyperplexor and the featurevisor maintain
guest state in the same format, but that it is possible to trans-
late between formats.

In the rest of this section, we describe in detail (1) how
Dichotomy shares and maintains guest memory between
the hyperplexor and featurevisor, and (2) how Dichotomy
efficiently migrates control of the guest between them.

3.1 Memory management
In Dichotomy, the guest may run on either the hyperplexor
or featurevisor. To avoid memory copying while the guest
transitions from one to the other, Dichotomy maps guest
memory into both the featurevisor and the hyperplexor. The
key challenge in memory management is ensuring that the
shared guest memory and memory maps remain consistent
as the guest transitions from the hyperplexor to featurevisor
(or vice versa), even if guest pages are added to, removed
from, or remapped in the guest memory map.

Background. Modern x86 hypervisors manage the phys-
ical memory resources a guest can access using a virtual-
ization feature called extended page tables (EPT) [20]. As
shown in Figure 4(a), in a standard (one-level) virtualiza-
tion environment, the hypervisor manages a data structure
that contains the memory map information about the guest,
which is backed by an EPT (guest EPT). The EPT indicates
to the hardware what the mapping should be between guest-
physical pages and machine-physical pages. Whenever the
guest attempts to access a guest-physical memory address
that is not present (or not allowed) based on an EPT entry,

the hardware generates an EPT fault and traps into the hy-
pervisor. Using this mechanism, the hypervisor can imple-
ment demand paging (among other things) by interpreting
EPT faults and updating the guest map and guest EPT ac-
cordingly.

Figure 4(b) depicts memory management in a nested en-
vironment. In a nested environment, guest pages are mapped
into the second-layer hypervisor (L1). L1 manages memory
for the guest as if it has direct control over the virtualization
features of the hardware (i.e., single-layer virtualization). As
such, it maintains a guest EPT. However, the guest EPT is
virtualized; manipulations to the virtual EPT by L1 trigger a
trap to L0. L0, in turn, will interpret the trap and maintain a
shadow EPT that the guest actually runs with, which directly
maps guest-physical addresses to the appropriate machine-
physical addresses.1 If the guest causes an EPT fault, L0
bounces the fault to L1 using a trampoline.

Sharing Memory. Figure 5 depicts how Dichotomy shares
and manages guest memory between the hyperplexor and
featurevisor. The hyperplexor has access to all of the phys-
ical memory on the machine and can assign some of it
to a guest running directly on the hyperplexor in the nor-
mal way, maintaining an EPT for the guest called the dual
guest/shadow EPT (Figure 5). Similarly, the hyperplexor as-
signs some physical memory to the featurevisor and main-
tains an EPT for it, depicted F-EPT in Figure 5. By including
the physical pages corresponding to the guest (e.g., the tar-
gets specified in the dual guest/shadow EPT) in the F-EPT,
the hyperplexor can share the guest memory with the fea-
turevisor.

To avoid conflicts with the hyperplexor, the featurevisor
must only use the shared guest memory for guest pages. As
such, the hyperplexor and featurevisor agree upon a region
of the featurevisor’s physical memory that will be reserved
for guest pages. This can be done through convention (e.g.,
a well-known memory region as in BIOS/OS interaction)
or through an explicit handshake protocol using hypercalls.
In Dichotomy, featurevisors allocate a reserved region for
guest pages and register them with the hyperplexor upon
initialization.

Managing the Guest Memory Map. As the guest runs on
either the hyperplexor or featurevisor, the guest memory
map may change. For example, a new page may be added
to the guest memory map if the guest accesses part of its
physical-memory space for the first time. Guest EPT faults
are routed along either the hyperplexor path (denoted by
“H” in Figure 5) or the featurevisor path (denoted by “F”)

1 This style of nested page table management is also known as multi-
dimensional paging [29, 46]. Another approach to nested page table man-
agement, called shadow-on-EPT, creates a shadow page table in L1 for the
guest’s standard page tables. We do not discuss shadow-on-EPT further due
to its performance overhead, caused by the more frequent standard-paging-
related guest traps.

!"#$%#&$'(%)
*+,)-./&0)!.12&$%)

3/$40) -$.0/%$564(%)

76%0/.&)*+,)

76%0/.&)

*+,),%.#)

!.12&$%)

8/.&)3/$409

:;.2(<)*+,)

*+,)-./&0)!.12&$%)

,%.=#(&61$)

*+,)>./&0)

-?*+,)@;.1A$),%.BC$%)

@;.1A$)D$B65%)

-)

!)

@;.1A$)

DB65$%)

E(/1B$)

*+,)>./&0)

-(%<.%2)

B;.1A$4)
76%0/.&)*+,)

=(26FB.G(1)

Figure 5: Memory management in Dichotomy

depending on whether the guest happens to be running on
the hyperplexor or the featurevisor.

When the guest is running on the hyperplexor, memory
management proceeds in a similar fashion to single-layer
virtualization (Figure 4(a)). For the guest, the hyperplexor
maintains the dual guest/shadow EPT in its “guest” role (its
“shadow” role is described in the next paragraph in the con-
text of the featurevisor). If the guest triggers an EPT fault
(e.g., to trigger demand paging), the hyperplexor receives a
trap. However, before updating the EPT, the EPT fault han-
dler passes the fault through a change tracker. The change
tracker records EPT modifications, which will be transferred
to the featurevisor at some later time, before it begins run-
ning the guest. The featurevisor contains a change receiver,
which interprets a list of recorded EPT modifications from
the change tracker and updates the featurevisor’s virtual EPT
accordingly.

When the guest is running on the featurevisor, mem-
ory management proceeds in a similar fashion to standard
nested virtualization (Figure 4(b)). The featurevisor does
not need to implement a change tracker, because all EPT
faults and updates already necessarily pass through the hy-
perplexor. When the guest is running on the featurevisor,
guest EPT faults still enter the hyperplexor directly; the hy-
perplexor simply bounces the faults to the featurevisor via
the trampoline. Then, the featurevisor handles the fault. If
the featurevisor updates the virtual EPT due to the fault (or
for any other reason), the hyperplexor will receive a trap.
The hyperplexor passes the trap to its change receiver. The
change receiver interprets the virtual EPT trap and updates
the dual guest/shadow EPT (in its “shadow role” now). At
this point, the hyperplexor dual guest/shadow EPT is syn-
chronized with the virtual EPT in the featurevisor.

Encoding EPT Changes. When the hyperplexor makes a
change to an EPT entry in the dual guest/shadow EPT, the
change tracker encodes it in a format that will be later inter-
preted by the featurevisor’s change receiver. In Dichotomy,
the change tracker constructs a new EPT entry that specifies
the mapping between a guest physical page and a featurevi-
sor physical page. For an EPT entry in the dual guest/shadow
EPT referring to the mapping (xguest → yhyperplexor), the

forever:

execute guest while waiting for a trigger

on_trigger:

relinquish_guest

wait_for_guest

Figure 6: Hyperplexor behavior

forever:

wait_for_guest

do action

relinquish_guest

finish action

Figure 7: Featurevisor behavior

change tracker first performs a reverse lookup in the feature-
visor EPT to obtain the mapping (z f eaturevisor→ yhyperplexor).
With this information, the change tracker can construct an
entry that the featurevisor can directly interpret: (xguest →
z f eaturevisor). The change tracker also copies the flags (e.g.,
write protections, etc.) so that those in the new EPT entry
match those in the dual guest/shadow EPT.

3.2 Guest Switching
Control of the guest switches between hyperplexor and fea-
turevisor via a VM migration-like procedure, in which guest
state is transferred between the migration engines in the hy-
perplexor and featurevisor. Specifically, one migration en-
gine pauses the guest and transfers the guest VCPU state,
I/O state, and any unsynchronized page table mappings to
the other migration engine. As described above (and eval-
uated in Section 6), this transfer is efficient because only
the EPT modifications need to be sent, not the page con-
tents. The remaining state (CPU, I/O, etc.) is relatively small
(about 16 KB).

The migration engines expose a simple interface to
other programs (at the same level): wait for guest, which
blocks until the migration engine at the other end issues a
relinquish guest call, which initiates the migration pro-
cedure.

The hyperplexor, which has control of the guest at the
start of its execution, runs the guest until a trigger occurs.
The hyperplexor conceptually runs the program specified in
Figure 6. The featurevisor, on the other hand, conceptually
runs the program specified in Figure 7. The action performed
by the featurevisor is split into two segments to allow the
featurevisor to relinquish the guest before completing its
operation. For example, if the featurevisor is performing a
snapshot-like activity, the featurevisor may compute an in-
memory snapshot, relinquish the guest, then complete the
action by writing the snapshot to disk.

L0

Guest

a)

L0

Guest

b)

L1

L0

Guest

c)

L1

QEMU

for

Guest

QEMU

for L1

QEMU

for

Guest

on L0

QEMU

for

Guest

on L1

QEMU

for

Guest

Guest

QEMU

for L1

Guest Control

Switching

KVM

KVM

KVM
KVM

KVM

Figure 8: The position of KVM hypervisor as a Linux kernel
module and QEMU as a user-level process, for a) single
layer virtualization, b) standard nested virtualization, and
c) Dichotomy.

Triggers. Each featurevisor in Dichotomy registers itself
with the hyperplexor. As part of the registration process,
the featurevisor specifies when it should be invoked from
a set of hyperplexor triggers. The most trivial trigger is
time based: for example, a featurevisor can specify a time
interval detailing the frequency it should be invoked. To
date, Dichotomy supports such a time-based trigger; further
triggers, such as network events, or guest execution of a
particular protected instruction or access to a particular part
of memory, are discussed in Section 5.

4. Implementation
We have implemented Dichotomy using the KVM/QEMU
virtualization platform in the Linux operating system. We
begin with an overview of the roles of KVM and QEMU
components, followed by implementation-specific details of
guest memory sharing, fault handling, and control transfer.

Background. The KVM/QEMU [21] virtualization plat-
form in Linux consists of two major components (a) KVM,
which implements the core hypervisor functionalities as a
Linux kernel module, and (b) QEMU which is a user-level
management process, one per guest, that manages the life
cycle of a guest, communicates with the KVM kernel mod-
ule on behalf of the guest, and controls its I/O operations.
Figure 8 shows the position of the KVM kernel module and
the QEMU management process for non-nested, nested, and
Dichotomy VMs. Figure 8(a) shows a non-nested guest run-
ning on the L0 KVM hypervisor and being managed by an
associated QEMU process. When spawning a guest, the cor-
responding QEMU process designates a portion of its vir-
tual memory address space as belonging to the guest, con-
figures the guest’s memory, virtual CPU and virtual I/O de-
vices with the KVM kernel module, and launches the guest.
Privileged operations by the guest result in vmexits or traps
to the KVM hypervisor, which either handles the trap itself
(such as for page faults) or forwards the trapping event to
the QEMU process for further processing (such as I/O op-
erations). Figure 8(b) shows a nested guest running on a
L1 KVM hypervisor and being managed by an associated
QEMU process which also runs on L1. The L1 hypervisor
itself runs as a VM on the L0 hypervisor and has its own as-

sociated QEMU process on L0. vmexits by the guest are
forwarded by the L0 KVM hypervisor to its L1 counter-
part. Figure 8(c) shows a Dichotomy guest whose control
switches back and forth between the L0 (hyperplexor) and
L1 (featurevisor). At both levels, there is an associated per-
sistent QEMU process that manages the Dichotomy guest’s
execution. These two QEMU processes coordinate with each
other to exchange the guest execution state upon events that
trigger the transfer of guest control. Depending on where the
guest executes at any given instant, vmexits are handled as
in standard non-nested or nested modes.

Memory Management. The guest’s memory is shared be-
tween the featurevisor and hyperplexor dynamically during
runtime as each page of the guest is accessed. To enable this
dynamic sharing, however, the guest initialization operation
must set up a sharing mechanism in the hyperplexor. Specif-
ically, during initialization, the guest QEMU process on the
hyperplexor registers the guest’s memory map, i.e. QEMU’s
virtual memory address range associated with the guest, with
its respective KVM. Similarly, the guest QEMU process on
the featurevisor registers the guest’s memory map with the
KVM in the featurevisor, which in turn pre-allocates and reg-
isters a set of featurevisor physical addresses for the guest
with the KVM in the hyperplexor. Since the guest memory
is assigned from the virtual address space of the QEMU pro-
cess, no physical memory is reserved in advance. Therefore,
EPTs corresponding to the QEMU processes are empty at
initialization.

The allocation and sharing of guest memory pages oc-
curs when guest page faults are processed as described in
Section 3.1 under the heading “Managing the Guest Mem-
ory Map”. Our implementation differs from the design in the
way we realize the dual guest/shadow EPT. To realize the
ideal design – namely a single EPT that tracks guest mem-
ory map changes on both the hyperplexor and featurevisor –
would have required extensive changes to the core memory
management implementation in Linux and KVM. Instead,
the hyperplexor maintains two EPTs for the guest – a guest
EPT and a shadow EPT. The former is used when the guest
executes over the hyperplexor and the latter is used when the
guest executes over the featurevisor.

The guest EPT and shadow EPT are kept synchronized
by the hyperplexor when handling guest EPT faults. Specif-
ically, the EPT fault handling process described in Sec-
tion 3.1 differs in the implementation in the following man-
ner. Upon a shadow EPT fault (when the guest executes on
the featurevisor), before allocating a new physical page to re-
solve an incomplete shadow EPT entry, the hyperplexor first
checks if the faulting guest physical address has been already
allocated in the guest EPT (as a result of the guest running
previously on the hyperplexor). If the guest EPT mapping
exists, then it is used to update the shadow EPT and F-EPT,
else a new physical page is allocated. Conversely, upon a
guest EPT fault (when the guest runs on the hyperplexor),

the shadow EPT is first consulted before a new physical page
is allocated.

Guest Switching. The QEMU process includes a pre-
copy [9] based live migration mechanism wherein the en-
tire VM state is transferred from a source hypervisor to a
destination over a TCP connection. We implemented guest
switching in Dichotomy by modifying this migration mech-
anism in the QEMU of both the hyperplexor and feature-
visor. Besides the primary modification of replacing guest
memory transfer with memory sharing (described above),
we also implemented an interface for triggering the guest
switching. When the trigger is invoked, since the memory
is shared, only the CPU and I/O states are transferred over
the TCP connection between the two QEMU processes. Af-
ter each switch, the featurevisor and hyperplexor QEMUs
change their roles, from source to target or vice-versa. The
QEMU which relinquished the guest now waits for the guest
to return; while waiting, it maintains all the user and kernel
data structures representing the guest state so they can be
updated and reused once the guest returns.

Interestingly, we found that the use of certain virtualiza-
tion features trigger the reinitialization of VM structures. For
example, during migration, on the destination side, the load
of VAPIC state will reinitialize the EPT. We found this had
the side effect of imposing a “cold-start” penalty on the VM
workload performance immediately after a guest switch due
to the need to repopulate the virtual and shadow EPT entries
from scratch. In our implementation, we presently disable
usage of the VAPIC to avoid EPT reinitialization so that this
cold-start penalty is avoided. In future work, we will inves-
tigate ways to avoid EPT reinitialization without disabling
VAPIC.

5. Discussion and Future Directions
In this section, we discuss future work needed for a broader
applicability of ephemeral virtualization. We focus the dis-
cussion on triggers, hyperplexor services, featurevisor com-
position, and featurevisor support.

Triggers. Dichotomy currently supports time-based trig-
gers, for which featurevisors specify how often they should
run. This is useful for sample-based featurevisor services,
such as monitoring. However, a richer set of triggers in the
hyperplexor may enable more interesting featurevisors.

For example, featurevisors could provide interesting net-
work functionality in a similar style to software-defined net-
working (SDN) if they could be triggered every time a new
network flow arrives. The featurevisor could then decide
what to do with the flow, for example, it could block flows
to act like a firewall, or record them for a network tomogra-
phy application. Such a trigger could be implemented in the
hyperplexor by augmenting or replacing the existing mech-
anism to call the SDN controller in open vSwitch.

As another example, featurevisors could provide interest-
ing debugging or logging facilities if they could be triggered

every time a guest accesses a particular part of memory. For
example, the featurevisor could track changes to an impor-
tant data structure in order to trigger replication of the data.
This type of trigger could be implemented in the hyperplexor
by modifying the permission bits on EPT entries and modi-
fying the EPT fault handler to trigger a switch to the feature-
visor.

Similarly, featurevisors could provide interesting debug-
ging or logging facilities if they could be triggered every
time a particular guest function is executed. Upon gaining
control, the featurevisor could step through the function,
emulating each instruction. One way to implement such a
“guest program counter” trigger in the hyperplexor could be
by temporarily rewriting guest code at load time to ensure
that the guest traps at a specific program counter value.

Hyperplexor Services. There may be a set of common
“featurevisor utilities” that are independently implemented
in many featurevisors and can be implemented as services in
the hyperplexor. For example, tracking guest memory writes
(dirty page tracking) is useful for featurevisors performing
a wide range of memory-related activities, including work-
ing set estimation and guest checkpointing. Gaining control
on every guest write would result in a high duty cycle (near
100%) for these applications. Furthermore, switching so of-
ten would be unnecessary if the hyperplexor maintained and
delivered a summary of guest pages written in the current
epoch to the featurevisor. In other words, implementing a
dirty page tracking utility in the hyperplexor may enable a
class of featurevisors to become significantly more efficient.
As the set of featurevisors grow, there is an opportunity to
identify such utilities across featurevisors and explore their
implementation in the hyperplexor.

Featurevisor Composition. To this point, we have de-
scribed Dichotomy in terms of a one-to-one mapping be-
tween guest VMs and featurevisors. It is possible that this
relationship be generalized in either direction.

First, a VM could be associated with multiple feature-
visors. For example, the VM could infrequently switch to
a featurevisor performing a backup service and more fre-
quently switch to a featurevisor performing sample-based
network monitoring. The main issues to consider when as-
sociating multiple featurevisors with a VM relate to how the
featurevisors interact. For example, which featurevisor takes
precedence if both are triggered by the same event? How
can the hyperplexor ensure that triggers for one featurevi-
sor are not lost when executing on a different featurevisor?
Even with cooperative featurevisors, the mechanisms needed
to enable a single VM to be associated with multiple feature-
visors is a subject of future work.

Second, multiple VMs could be associated with a single
featurevisor. For example, multiple VMs could temporar-
ily use a high-speed shared memory communication chan-
nel [27, 45] implemented in the featurevisor. Conceptually,
this requires straightforward changes to the guest memory

Host Featurevisor Guest

Single 4 CPUs, 10 GB N/A 2 VCPUs, 1-8 GB
Nested 12 CPUs, 128 GB 4 VCPUs, 10 GB 2 VCPUs, 1-8 GB
Dichotomy 12 CPUs, 128 GB 4 VCPUs, 10 GB 2 VCPUs, 1-8 GB

Table 1: System configuration (CPU, Memory) of single-
layer, nested, and Dichotomy virtualization.

registration area and the communication channel (to identify
which guest VM each message relates to).

Featurevisor Support. Finally, our implementation of
both the hyperplexor and featurevisor is based on the
KVM/QEMU hypervisor. It is conceptually straightforward
to allow featurevisors to be based on different hypervisors
(e.g., Xen) or built from scratch. The key design of shar-
ing memory instead of migrating it can be maintained de-
spite heterogeneous hypervisors; however, the remaining
VM state and messages through the communication chan-
nel must be sent in a “canonicalized” form, with “drivers”
at each featurevisor to translate them into their featurevisor-
native structures.

6. Evaluation
In this section, we compare the performance of Dichotomy
against alternative approaches for implementing hypervisor-
level services, and use experimental results to show that
Dichotomy is best suited for the task. Our results show that
Dichotomy delivers low performance overheads due to fast
switching times. The specific goals of our experiments are
as follows:

• Investigate the operating region where the overheads of
running VMs on Dichotomy are low and an improvement
over running VMs on nested hypervisors full time.

• Demonstrate two featurevisors that implement
hypervisor-level services–VM introspection and network
monitoring–to manage unmodified guest VMs.

• Demonstrate that the switching times between the hyper-
plexor and the featurevisor are small and the associated
penalty is minimal.

Our evaluation setup consists of a server containing six dual-
core Intel Xeon 2.10 GHz CPUs and 128 GB memory. The
L0 and L1 hypervisors run the 3.14.2 Linux kernel, KVM
3.14.2, and QEMU 1.2.0.

We compared the performance of a VM running on Di-
chotomy against a VM running on a single-layer hypervisor
and a nested hypervisor. Table 1 shows the system configu-
rations for the three approaches. The guest VM (column 4)
is assigned 2 VCPUs and 1 to 8 GB memory in all three
configurations. The featurevisor (column 3) is assigned 4
VCPUs and 10 GB memory in the nested and Dichotomy
configurations. The physical host (column 2) is restricted in
the single-layer virtualization configuration to use 4 physical
CPUs and 10 GB memory, to match the featurevisor in the

idle(s) kernbench(s) netperf(s)

volatility 3.42±0.15 3.43±0.25 3.34±0.10
netmon 1.08±0.05 1.079±0.006 1.084±0.009

Table 2: Service times t f of featurevisor applications in sec-
onds.

other two configurations; in nested and Dichotomy config-
urations, the host uses all available CPUs (12) and memory
(128 GB).

6.1 Workloads
The guest VMs used in our experiments were either idle
or ran one of the three benchmarks below. We perform 5
iterations for each of the tests and report the average.

• Quicksort is the simplest of our benchmarks as it only
stresses CPU and memory, but does not perform I/O after
initialization. The quicksort benchmark consists of two
phases: initialization, in which the benchmark allocates
800MB of memory and populates it with random data;
and sorting, in which the benchmark sorts the data using
quicksort. We measure the time taken to complete the
sorting.

• Kernbench [22] is a multi-threaded benchmark that mea-
sures the time taken for repeatedly compiling the Linux
kernel. kernbench stresses memory, CPU and I/O. It
reads the kernel source code files from an external disk,
compiles the code and writes the binary output files
back to the disk. We used the default setting, in which
kernbench uses two threads to compile the kernel and
performs three iterations to measure the average compi-
lation time.

• Netperf [30] is a single-threaded network benchmarking
tool. It is primarily I/O bound. We use netperf to mea-
sure network throughput. We run a netperf client in-
side the guest and a netperf server on an external host.
The machine hosting the guest and the external host are
connected to the same switch with 1Gbps Ethernet links.
During each test, the netperf client sends a TCP stream
to the netperf server. We measure the average through-
put of the TCP stream over 100 seconds.

For the experiments with Dichotomy and the nested hy-
pervisor, we used three featurevisor configurations.

• The no-op featurevisor provides only standard VM man-
agement functions offered by KVM/QEMU. It immedi-
ately relinquishes control back to the hyperplexor.

• The volatility featurevisor implements a VM introspec-
tion application. volatility [43] is an introspection
tool that saves a memory dump of a VM, then performs
analysis on it. For our experiments, the output of the anal-
ysis is an accurate list of all processes running inside the

quicksort Runtime(s) Slowdown (α) CPU(%)

base 60.6±0.547 1.0 100
no-op 62.8±0.44 0.96 (β) 99
volatility 63.4±0.89 0.95 99
netmon 62.8±0.44 0.96 99

kernbench Runtime(s) Slowdown (α) CPU(%)

base 48.37±3.63 1.0 92
no-op 54.6±0.42 0.88 (β) 100
volatility 56±2.77 0.86 100
netmon 63.3±13.35 0.76 100

netperf Mbps Slowdown (α) CPU(%)

base 941.1±0.014 1.0 4
no-op 853.0±14.7 0.91 (β) 40
volatility 725.5±5.58 0.77 32
netmon 830.5±16.34 0.88 40

Table 3: Workload performance, slowdown (α), and CPU
usage. The slowdown for no-op is equivalent to standard
nesting overhead (β).

VM. We configured volatility to save the VM’s mem-
ory dump in a memory-based filesystem (tmpfs) to avoid
disk I/O overheads.

• The netmon featurevisor implements a network monitor-
ing application using the tcpdump tool to capture pack-
ets traversing through the virtual network interface of the
VM. To approximate sample-based monitoring, the fea-
turevisor only runs tcpdump for 1 second before relin-
quishing the guest.

The guest VM is migrated between the hyperplexor and
featurevisor at a given sampling rate. For the nested virtual-
ization configuration, the featurevisor functionality is imple-
mented in the L1 hypervisor, while in the single-layer virtu-
alization configuration, it is implemented directly in the L0
hypervisor.

6.2 Application Characterization
We begin with a characterization of the featurevisor applica-
tions in terms of both their service times and their impact on
the performance of workloads running within the guest VM.
Service time is the length of time needed by the featurevisor
to perform a task on the guest VM.

Table 2 shows the service times for the volatility and
netmon applications, representing the theoretical minimum
switching period for a Dichotomy VM with 2GB memory.
Notice that the service times remain largely unaffected by
the VM’s workload because the featurevisor has sufficient
vCPU and memory resources (as shown in Table 1) to run
its application and, if necessary, to prioritize its execution
over the VM.

Table 3 shows the slowdown of the quicksort,
kernbench and netperf workloads when the guest runs
on top of a featurevisor (with no switching). The slowdown

th
 tf

t

th!f

R
a
te

 o
f

P
ro

g
re

s
s

α X

X

β X

tf!h

Ephemeral

Nested

One cycle

Figure 9: Analysis of one duty cycle

factor α represents the normalized performance of the work-
load compared to the guest running directly in an unmodified
KVM L0 hypervisor (the row labeled ‘base’). For featurevi-
sors, the workload performance is measured with either an
idle featurevisor (no-op) or one that continually executes the
volatility or netmon tasks. The slowdown on the no-op
featurevisor represents the minimum overhead of running
a guest on a nested hypervisor (L1). We observe the most
slowdown with kernbench and netperf due to I/O con-
tention.

6.3 Expected Results
We do not expect Dichotomy to outperform nested virtual-
ization for all featurevisor applications and all workloads.
For instance, featurevisors that require a high duty cycle
(especially with high switching frequencies) will incur pro-
hibitive switching overhead. To build intuition and increase
confidence in our experimental results, we first examine the
operating region analytically.

Without loss of generalization, we only consider a single
cycle (Figure 9). We focus on quantifying the progress that
a guest VM workload makes during a full cycle, both in full
nested mode and when switching back and forth between the
hyperplexor and featurevisor. Let th be the time a VM spends
on the hyperplexor. Let t f be the time a VM spends on the
featurevisor. During th, let X represent the expected rate at
which the VM makes progress in Units/t. When a VM runs
on top of a featurevisor, it can be slowed down in two ways.
The first slowdown is purely due to nesting overhead. This
is captured by β , resulting in a reduced rate of progress βX .
The second slowdown is when a featurevisor application
is running. There, the VM will be slowed down by rate α

(i.e., due to nested virtualization overhead and contention
for resources utilized by the featurevisor application). Thus,
we expect the VM to make αX progress.

As depicted by the solid blue line in Figure 9, in
ephemeral mode, the VM’s rate of progress will switch be-

tween X and αX . There is, however, a non-zero switching
time in which the VM is paused (i.e., makes no progress).
This time is captured by th→ f and t f→h, which represent the
time to move the VM between the hyperplexor and the fea-
turevisor, and vice versa. In contrast, Figure 9 also shows
the VM’s rate of progress in full nested mode (the red dotted
line) which switches between αX and βX with no switching
time.

A full cycle, t, can thus be expressed as th + th→ f + t f +
t f→h. The progress that a guest VM workload makes with
ephemeral virtualization (Pephemeral) is:

Pephemeral = Xth +(0× th→ f)+αXt f +(0× t f→h) (1)

In contrast, the progress made by the VM in full nested
mode (Pnested) is expressed as:

Pnested = αXt f +βX(th + th→ f + t f→h) (2)

Now, we calculate the range where the VM makes more
progress during ephemeral mode when compared to nested
mode (i.e., when Pephemeral > Pnested). Performing direct sub-
stitution of the above equations and solving for th, we get:

th >
β

1−β
(th→ f + t f→h) (3)

The results confirm intuition: it is better to switch back
and forth as long as the VM stays on the hyperplexor long
enough to amortize the switching cost. In the next subsec-
tion, we experimentally find that ephemeral mode delivers
lower performance overhead than full nested mode for peri-
ods as small as 2.5 seconds.

6.4 Macro Benchmarks
Figures 10, 11, and 12 show the relative performance of each
VM workload (quicksort, kernbench, and netperf)
compared to the the single level virtualization (Base), un-
der each featurevisor (no-op, netmon, and volatility).
Each graph shows the results when running the VM and fea-
turevisor in Dichotomy, a standard nested virtualization en-
vironment, and a naı̈ve ephemeral virtualization implemen-
tation using standard pre-copy live migration as the switch-
ing mechanism (denoted Pre-copy).

For these experiments, we vary the period length, or the
frequency at which we run the featurevisor. We determine
the actual period lengths at which ephemeral virtualiza-
tion outperforms nested virtualization in a practical setting.
Moreover, we are interested in the following general trends:
1) Dichotomy outperforms nested for sufficiently large pe-
riod length, and 2) a fast switching mechanism is important
for ephemeral virtualization.

All of the results confirm these general trends. In general,
guest performance in Dichotomy converges more quickly to
a better value than nested virtualization, up to 12% improve-
ment. Regardless of the featurevisor application, as period

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(a) quicksort

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(b) kernbench

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(c) netperf

Figure 10: Workload runtimes when switching between hyperplexor and the no-op featurevisor.

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(a) quicksort

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(b) kernbench

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(c) netperf

Figure 11: Workload runtimes when switching between hyperplexor and a featurevisor running the netmon task.

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(a) quicksort

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(b) kernbench

0 4 8 12 16
Period (Seconds)

0.0

0.2

0.5

0.8

1.0

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 t

o
 B

a
s
e

Dichotomy
Nested
Pre-copy

(c) netperf

Figure 12: Workload runtimes when switching between hyperplexor and a featurevisor running the volatility task.

length increases, VM performance on Dichotomy converges
to single-level virtualization (X from the analysis in Sec-
tion 6.3), whereas VM performance on nested converges to
base nested performance with no featurevisor running (βX
from the analysis in Section 6.3). The importance of a fast
switching time is dramatically emphasized by the poor per-
formance of pre-copy live VM migration in all cases.

To explain the results in more detail, we first examine
Figure 10. The no-op featurevisor does no work, but im-
mediately yields the guest back to the hyperplexor. It does,
however, incur switching overhead. The smallest period we
test is about 160 ms, due to the fact that switching overhead
(about 80 ms each direction) dominates at periods this small.
As expected, Figure 10 shows that the performance of the
workloads with Dichotomy suffers at short periods due to

the switching overhead, but the performance improves with
longer periods. For comparison, pre-copy requires about 4s
to switch the guest’s execution. Therefore the workload per-
formance can only be demonstrated for period durations
greater than 10s (> 2 * switch time + featurevisor service
time). Furthermore, the iterative memory copying during the
workload execution adversely impacts the workload perfor-
mance with pre-copy.

The performance of kernbench and netperf with Di-
chotomy matches the performance with the nested mode at
3 and 2.5 second periods respectively, while the performance
of quicksort matches its performance with nested only af-
ter a 6 second period. Since quicksort does not stress I/O,
as opposed to netperf and kernbench, it has lower nesting
overhead in comparison, (i.e. βX from the analysis in Sec-

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

S
w

it
c
h

in
g

 t
im

e
 (

s
)

Guest memory size (GB)

Pre-copy
Dichotomy

(a) idle

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

S
w

it
c
h

in
g

 t
im

e
 (

s
)

Guest memory size (GB)

Pre-copy
Dichotomy

(b) kernbench

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

S
w

it
c
h

in
g

 t
im

e
 (

s
)

Guest memory size (GB)

Pre-copy
Dichotomy

(c) netperf

Figure 13: Switching times of guest VMs with varying memory sizes between hyperplexor to featurevisor.

 0

 200

 400

 600

 800

 0 2 4 6 8 10

D
a

ta
 t

ra
n

s
fe

rr
e

d
 (

M
B

)

Guest memory size (GB)

Pre-copy
Dichotomy

Figure 14: Data copied for switching

tion 6.3 for quicksort is higher than that with kernbench

and netperf). Therefore, for quicksort, Dichotomy can
only amortize the switching overhead for longer period du-
rations (i.e., when th is greater).

Figure 11 shows the performance of the all three work-
loads with netmon. In each period, the guest executes on
the featurevisor for 1s before switching back to the hyper-
plexor. All three workloads show a similar pattern as with
the no-op featurevisor, with an amortization point of 4 sec-
onds or less. The performance of the VMs on Dichotomy
remains fairly stable, except for the netperf workload. The
netperf workload is most affected by the netmon feature-
visor because it is a network-bound workloads.

Figure 12 shows the workload performance with the
volatility featurevisor application. For each period, the
guest executes on the featurevisor until the VM intro-
spection is complete. Table 2 shows the service time of
volatility for different workloads. Since the service time
with volatility is longer than with netmon, we can
demonstrate the workload performance for period lengths 4s
or greater and as a result the crossing point of Dichotomy
and nested is not visible. This result is important, as it in-
dicates that for realistic featurevisors with service times of
a few seconds, Dichotomy will always outperform standard
nesting, even if they run frequently.

 0

 2

 4

 6

 8

 0 2 4 6 8 10

In
it
ia

liz
a

ti
o

n
 (

s
)

Guest memory size (GB)

Dichotomy
Nested

Figure 15: One-time initialization cost

6.5 Micro Benchmarks
In the previous subsection, we showed that Dichotomy’s
low switching time played an important role in the system’s
performance. In this subsection, we quantify Dichotomy’s
switching times and its VM initialization overheads. Fig-
ure 13 compares VM switching times between the hyper-
plexor and a no-op featurevisor using Dichotomy and pre-
copy live VM migration. Switching times to and from the
hyperplexor—th→ f and t f→h —were observed to be similar,
hence they are not distinguished here. The figure shows that,
as the guest memory size is increased from 1 GB to 8 GB, the
measured switching time for pre-copy also increases (rang-
ing from 2 to 10 seconds), mainly due to memory copying
overhead. In contrast, the switching time using Dichotomy
is fairly constant around 80 ms, since the guest memory is
shared in advance during initialization by the hyperplexor
and the featurevisor.

We also measured the downtime experienced by a guest
running kernbench when switching between the hyper-
plexor and the featurevisor when using pre-copy versus di-
chotomy. With pre-copy, the downtime remains within the
range of 300ms to 350ms, whereas with Dichotomy the
downtime is around 80 ms.

Figure 14 shows the number of data bytes copied as
the VM size is increased; pre-copy shows an increase from
400MB to 625MB; Dichotomy transfers a constant amount
of 15.8KB consisting of VCPU and I/O state.

Figure 15 compares the one-time initialization overhead
for a nested guest against the Dichotomy guest. The nested
guest initialization time increases slightly from 1.7 seconds
to 2.3 seconds. However, Dichotomy guest initialization
time increases from 2.1 seconds to 5.3 seconds since the ini-
tialization involves sharing the Dichotomy guest’s memory
between the hyperplexor and the featurevisor. In our current
implementation, this requires the featurevisor to register the
guest’s memory address space with the hyperplexor through
multiple hypercalls, the cost of which increases with increas-
ing guest memory size. This cost can be potentially reduced
by batching the registration operations into fewer hypercalls.

7. Related Work
Several lines of research have considered dynamic switching
between execution environments: virtualized, bare-metal,
and emulated. In this section, we discuss such switching ap-
proaches, and related work on hypervisor feature confine-
ment and nested virtualization.

Ho et al. [19] use an on-demand approach to switch
between single-layer guest VM execution (on Xen) and a
QEMU-based emulator. Their system is tailored to a single
application: performing taint tracking and the enforcement
of a taint policy to disallow execution of tainted data. With
Dichotomy, we are interested in a general approach to sup-
port a range of applications of which taint-based policy en-
forcement is an interesting use-case.

There has also been work examining dynamic switch-
ing between a “bare-metal” operating system and running
the OS in a virtual machine. The on-the-fly introduction
of a VMM underneath an operating system has been ex-
plored by on-demand virtualization [23]. It relies on OS hi-
bernation mechanisms and the conversion results in about
90 seconds of downtime. Also, Mercury [8] proposes “self-
virtualization”, in which a VMM is dynamically attached
or detached beneath an operating system only when needed
with about 0.2 ms switching time. VMware offers products
to convert between physical and virtual machines and vice
versa [40, 41], but they do not target running systems. By tar-
geting nested virtualization, Dichotomy leverages existing
mechanisms to deal with the complexity of physical hard-
ware, interrupt mapping, etc.

We propose a hypervisor-as-a-service environment in
which many different hypervisors provide specialized fea-
tures. In related work, there have been approaches that re-
duce the hypervisor’s functionality to its essentials for a par-
ticular problem domain. A “microvisor” [26] does not virtu-
alize all resources and is only applicable for the problem of
online server maintenance. Similarly, CloudVisor [49] uses
nested virtualization on a slim, trusted base hypervisor. Di-
chotomy’s support for introducing and removing layers com-
plements this work.

A related line of research relates to disaggregating the
large administrative domain [6, 10, 28, 35] typically asso-

ciated with a hypervisor, such as Domain 0 in Xen. The goal
of these efforts to is replace a single large administrative
domain with several small sub-domains (akin to privileged
service-VMs) that are more resilient to attacks and failures,
better isolated from others, and can be customized on a per-
VM basis. Thus a VM could pick and choose the services of
specific sub-domains which run at the same level as the VM
atop the common hypervisor. Dichotomy’s nested architec-
ture essentially reduces the privilege of the featurevisor in
addition to splitting them from the hyperplexor.

Dichotomy leverages existing work on nested virtualiza-
tion and live VM migration. Nested virtualization was orig-
inally proposed and refined in the 1970s [4], has been stud-
ied in a microkernel environment [14], and has now become
mainstream due to new implementations [5, 16] leverag-
ing hardware support for virtualization on the x86 architec-
ture [1, 38]. Dichotomy uses nested support in KVM [21].
Live VM migration [9, 18] enables VMs to migrate from one
hypervisor to another with minimal downtime. Dichotomy
both transfers control and completes migration faster than
existing techniques by eliminating memory copying.

8. Conclusion
We presented Dichotomy, a new two-layer cloud architec-
ture that splits the role of hypervisors between hyperplexors
and featurevisors. This split enables cloud providers to focus
on the security and stability, while at the same time allowing
a third-party featurevisor ecosystem to grow in a hypervisor-
as-a-service idiom. Experiments with our prototype show
that, through ephemeral virtualization, Dichotomy delivers
better VM performance than nested virtualization, even for
featurevisor applications that access the VM as often as ev-
ery 2.5 seconds. We attribute Dichotomy’s performance to
low VM switching times between hyperplexor and feature-
visor, averaging 80 ms. In the future, we look forward to
exploring the interaction and agility of featurevisors in a
hypervisor-as-a-service model.

Acknowledgement
This work is supported in part by the National Sci-
ence Foundation through grants 1527338, 1320689, and
0845832, and by the Air Force Rome Labs through grant
CA01160915BINGU.

References
[1] AMD Virtualization (AMD-V).

http://www.amd.com/us/solutions/servers/virtualization.

[2] A. Arcangeli, I. Eidus, and C. Wright. Increasing memory
density by using ksm. In Proc. of Linux Symposium, Ottawa,
Canada, July 2009.

[3] S. F. Barrett and D. J. Pack. Microcontrollers Fundamentals
for Engineers and Scientists, chapter 4, pages 51–64. Morgan
& Claypool Publishers, San Rafael, CA, July 2006.

[4] G. Belpaire and N.-T. Hsu. Formal properties of recursive
virtual machine architectures. In Proc. of ACM SOSP, Austin,
TX, pages 89–96, Nov. 1975.

[5] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-A.
Yassour. The turtles project: Design and implementation of
nested virtualization. In Proc. of USENIX OSDI, Vancouver,
Canada, Oct. 2010.

[6] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy.
Self-service cloud computing. In Proc. of ACM CCS, Raleigh,
NC, pages 253–264, Oct. 2012.

[7] H. Chen, R. Chen, F. Zhang, B. Zang, and P. Yew. Live
updating operating systems using virtualization. In Proc. of
ACM VEE, Ottawa, Canada, June 2006.

[8] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Mer-
cury: Combining performance with dependability using self-
virtualization. In Proc. of IEEE ICPP, Xi’an, China, Sept.
2007.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Machines.
In Proc. of USENIX NSDI, Boston, MA, May 2005.

[10] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking up is hard to do:
Security and functionality in a commodity hypervisor. In
Proc. of ACM SOSP, Cascais, Portugal, Oct. 2011.

[11] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: high availability via asynchronous
virtual machine replication. In Proc. of USENIX NSDI, San
Francisco, CA, Apr. 2008.

[12] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware
analysis via hardware virtualization extensions. In Proc. of
ACM CCS, pages 51–62, 2008.

[13] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proc. of USENIX OSDI,
Boston, MA, Dec. 2002.

[14] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines. In
Proc. of USENIX OSDI, Seattle, WA, Oct. 1996.

[15] T. Garfinkel and M. Rosenblum. A virtual machine intro-
spection based architecture for intrusion detection. In Proc.
of NDSS Symposium, San Diego, CA, Feb. 2003.

[16] A. Graf and J. Roedel. Nesting the virtualized world. In Linux
Plumbers Conference, Portland, OR, Sept. 2009.

[17] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference en-
gine: Harnessing memory redundancy in virtual machines. In
Proc. of USENIX OSDI, San Diego, CA, Dec. 2008.

[18] M. Hines and K. Gopalan. Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-
ballooning. In Proc. of ACM VEE, Washington, DC, Mar.
2009.

[19] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation. In
Proc. of ACM EuroSys, Leuven, Belgium, Apr. 2006.

[20] Intel 64 and IA-32 Architectures. Software Develop-
ers Manual, Combined Volumes: 1, 2A, 2B, 2C, 3A,
3B, 3C and 3D. http://www.intel.com/content/

dam/www/public/us/en/documents/manuals/64-ia-

32-architectures-software-developer-manual-

325462.pdf.

[21] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the linux virtual machine monitor. In Proc. of Linux
Symposium, Ottawa, Canada, June 2007.

[22] C. Kolivas. Kernbench:
http://ck.kolivas.org/apps/kernbench/kernbench-0.50/.

[23] T. Kooburat and M. Swift. The best of both worlds with on-
demand virtualization. In Proc. of USENIX HOTOS, Napa,
CA, May 2011.

[24] K. Kourai and S. Chiba. HyperSpector: Virtual Distributed
Monitoring Environments for Secure Intrusion Detection. In
Proc. of ACM VEE, Chicago, IL, June 2005.

[25] J. Levon. OProfile: System-wide profiler for Linux systems,
http://oprofile.sourceforge.net/about/.

[26] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable
virtual machines enabling general, single-node, online main-
tenance. In Proc. of ACM ASPLOS, Boston, MA, Oct. 2004.

[27] A. C. Macdonell. Shared-memory optimizations for virtual
machines. PhD thesis, University of Alberta, Edmonton,
Canada, 2011.

[28] D. G. Murray, G. Milos, and S. Hand. Improving xen security
through disaggregation. In Proc. of ACM VEE, Seattle, WA,
Mar. 2008.

[29] G. Natapov. Nested EPT to make nested VMX faster. In KVM
Forum, Edinburgh, UK, Oct. 2013.

[30] Netperf. http://www.netperf.org/netperf/.

[31] D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390
interpretive-execution architecture, foundation for VM/ESA.
IBM Systems Journal, 30(1):34–51, Feb. 1991.

[32] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An
architecture for secure active monitoring using virtualization.
In IEEE Symposium on Security and Privacy, Oakland, CA,
pages 233 – 247, May 2008.

[33] RedHat CloudForms. http://www.redhat.com/en/technologies/cloud-
computing/cloudforms.

[34] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention
of kernel rootkits with VMM-based memory shadowing. In
Recent Advances in Intrusion Detection, Boston, MA, pages
1–20, Sept. 2008.

[35] U. Steinberg and B. Kauer. Nova: A microhypervisor-based
secure virtualization architecture. In Proc. of EuroSys, Paris,
France, pages 209–222, 2010.

[36] S. Suneja, C. Isci, V. Bala, E. de Lara, and T. Mummert. Non-
intrusive, out-of-band and out-of-the-box systems monitoring
in the cloud. In SIGMETRICS’14, Austin, TX, 2014.

[37] J. Toldinas, D. Rudzika, V. Štuikys, and G. Ziberkas. Rootkit
detection experiment within a virtual environment. Electron-
ics and Electrical Engineering–Kaunas: Technologija, (8):
104, 2009.

[38] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins,
A. Anderson, S. Bennett, A. Kagi, F. Leung, and L. Smith.
Intel virtualization technology. Computer, 38(5):48–56, 2005.

[39] vmitools. https://code.google.com/p/vmitools/.

[40] VMware, Inc. Virtual Machine to Physical Machine Migra-
tion. http://www.vmware.com/support/v2p/doc/V2P_

TechNote.pdf, 2004.

[41] VMware, Inc. VMware Converter Users Manual. http://

www.vmware.com/pdf/VMware_Converter_manual.pdf,
2006.

[42] VMWare vRealize. https://www.vmware.com/products/vrealize-
suite.

[43] Volatility Framework. http://code.google.com/p/volatility/.

[44] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proc. of USENIX OSDI, Boston, MA,

Dec. 2002.

[45] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: a transpar-
ent high performance inter-VM network loopback. In Proc. of
ACM HPDC, Boston, MA, pages 109–118, June 2008.

[46] O. Wasserman. Nested Virtualization: Shadow Turtles. In
KVM Forum, Edinburgh, UK, Oct. 2013.

[47] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-
Blanket: Virtualize once, run everywhere. In EuroSys, Bern,
Switzerland, Apr. 2012.

[48] Xen Cloud Platform. http://wiki.xenproject.org/wiki/XCP Overview.

[49] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In Proc. of ACM SOSP, Cas-
cais, Portugal, Oct. 2011.

