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ABSTRACT
Large cluster-based cloud computing platforms increasingly
use commodity Ethernet technologies, such as Gigabit Eth-
ernet, 10GigE, and Fibre Channel over Ethernet (FCoE),
for intra-cluster communication. Traffic congestion can be-
come a performance concern in the Ethernet due to con-
solidation of data, storage, and control traffic over a com-
mon layer-2 fabric, as well as consolidation of multiple vir-
tual machines (VMs) over less physical hardware. Even as
networking vendors race to develop switch-level hardware
support for congestion management, we make the case that
virtualization has opened up a complementary set of oppor-
tunities to reduce or even eliminate network congestion in
cloud computing clusters. We present the design, implemen-
tation, and evaluation of a system called XCo, that performs
explicit coordination of network transmissions over a shared
Ethernet fabric to proactively prevent network congestion.
XCo is a software-only distributed solution executing only
in the end-nodes. A central controller uses explicit permis-
sions to temporally separate (at millisecond granularity) the
transmissions from competing senders through congested
links. XCo is fully transparent to applications, presently
deployable, and independent of any switch-level hardware
support. We present a detailed evaluation of our XCo pro-
totype across a number of network congestion scenarios, and
demonstrate that XCo significantly improves network per-
formance during periods of congestion.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management–
Network Communication; D.4.7 [Organization and De-
sign]: Distributed System
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Design, Experimentation, Performance

Keywords
Congestion, Ethernet, Virtualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Cloud computing infrastructures consist of large data cen-

ters clusters that increasingly use commodity servers and
networking hardware, such as Gigabit Ethernet. Hardware,
administration, and energy costs are driving cloud operators
to use virtualization technology to consolidate thousands
of virtual machines (VMs) on shared hardware platforms.
Most VMs host service-oriented applications that are inher-
ently communication intensive. Consequently, congestion in
the cluster’s network fabric is becoming a major concern,
even in networks with multi-Gigabit switching capacity.

A number of converging factors contribute to this conges-
tion, such as storage access over network using iSCSI [18] or
Fibre Channel over Ethernet (FCoE) [17], data-intensive ap-
plications such as streaming media and data mining, and ag-
gressive consolidation of communication-intensive VMs onto
a limited number of servers and switches. Additionally, the
network fabric carries high volume control traffic generated
by the virtualization layer for activities such as live VM
migration, VM checkpointing, and backups. Commodity
Ethernet hardware is cheap, easy to install and manage,
and can be shared by a wide range of network services and
protocols. However, this commoditization often comes at a
price, namely higher latency and smaller/lower-performance
packet buffers. Consequently, switch buffers can become
easily overwhelmed by high-throughput traffic that can be
bursty and synchronized, leading to significant packet losses.

A well-known example of congestion in data center Ether-
net is the TCP throughput collapse problem, also known
as Incast [26, 35, 28, 9], that is experienced by barrier-
synchronized traffic, such as synchronous reads in networked
storage. Incast arises from synchronized packet losses suf-
fered by multiple TCP senders at intermediate switch buffers
leading to lock-step timeouts and significant under-utilization
of network capacity. Another source of network congestion
could be the presence of non-TCP traffic, such as UDP, or
traffic that does not self-regulate in response to network
congestion. For example, Facebook engineers rewrote mem-

cached [31] to use UDP traffic to enable application-level
flow-control. Other types of traffic may be responsive to con-
gestion but not TCP-friendly [10], such as streaming media,
voice/video over IP, and peer-to-peer traffic. Furthermore,
even in the absence of significant UDP traffic, large num-
ber of short-lived TCP connections (mice) have been found
to be common in data centers [13]. Simultaneous bursts of
short TCP connections can generate a congestion effect sim-
ilar to UDP [6] since they collectively transmit heavy bursts
of packets during the TCP slow start phase.
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Figure 1: Experimental setups: Multiple senders
transmit to (a) one receiver via 1Gbps link, (b) dif-
ferent receivers via 10Gbps uplink.

Essentially, the root cause of all congestion is the tran-
sient overload of buffering capacity within a switch. Hard-
ware and software mechanisms to control congestion in com-
modity Ethernet switches are hard to deploy at scale [19,
16]. Ethernet flow control in 802.3x [11] allows an over-
loaded downstream port to request a temporary pause of
all traffic from the upstream port. While useful in low-end
edge switches, this feature is counter-productive in backbone
switches due to head-of-line blocking effect. Thus adminis-
trators are often reluctant to enable it for fear of slowing
down switch forwarding performance. The current industry
practice is to simply throw more hardware at the problem
by adding higher capacity network switches, multi-port net-
work cards, and physically separate layer-2 networks for data
and control traffic. However additional hardware merely in-
creases network cost and complexity without addressing the
root cause of the problem.

This paper makes the case for explicit coordination of net-
work transmission activities among virtual machines (VMs)
in the data center Ethernet to proactively prevent network
congestion. We argue that virtualization has opened up new
opportunities for explicit coordination that are simple, ef-
fective, currently feasible, and independent of switch-level
hardware support. We show that explicit coordination can
be implemented transparently without modifying any appli-
cations, standard protocols, network switches, or VMs. Our
solution, called XCo, co-ordinates the network transmissions
from multiple VMs so to avoid throughput collapse, while
simultaneously increasing network utilization. We present
experimental evidence via a proof-of-concept implementa-
tion of XCo that demonstrates significant gains in switched
Ethernet performance during periods of network congestion.

We begin by experimentally demonstrating congestion-
induced performance problems in a Gigabit Ethernet fabric
under a number of different scenarios. Next we present the
design and implementation of XCo and demonstrate that it
can prevent throughput collapse and significantly improve
network utilization. Finally we discuss related research and
conclude with an overview of challenges and opportunities
in a full-fledged XCo-based solution.

2. IMPACT OF ETHERNET CONGESTION
This section motivates the need for explicit coordination

by experimentally demonstrating the performance impact
of network congestion. Consider two experimental setups
shown in Figure 1. End nodes running Xen [3] VMs are
connected via a layer-2 switched Ethernet consisting of two
Nortel 4526-GTX switches each having 24 1000Base-T ports
(for end host connectivity) and two XFP slots with 10Gbps
optical transceiver modules (for uplink between switches).
Hosts run Xen 3.3.1/Linux 2.6.29.2. Although both setups
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Figure 2: Incast problem with iSCSI setup.

are somewhat simple, they serve to demonstrate the basic
traffic contention problem in larger switched Ethernet.

2.1 TCP Throughput Collapse: Incast
We first demonstrate the problem of TCP throughput col-

lapse, also known as the Incast problem, that was docu-
mented earlier in [26, 35, 28, 9]. This problem is observed in
high-bandwidth low-delay networks where multiple servers
send barrier-synchronized traffic to a common client.

To demonstrate this problem, we set up an iSCSI stor-
age network with the topology shown in Figure 1(a). We
stripe the data using RAID-0 configuration across N stor-
age servers (iSCSI targets) S1...SN . The storage client R1,
an iSCSI initiator, reads 1GB of this striped data using the
dd command using a block unit size of 1MB. The network
interfaces at both the client and the server nodes use jumbo
frames of size 9KB. Figure 2 shows that, as the number of
iSCSI targets is increased, the throughput reported by dd

drops steeply from 842Mbps to 305Mbps. Despite the fact
that more iSCSI servers means that each read of a 1MB
block is serviced in parallel by multiple servers, the near
simultaneous response from all servers overwhelms the net-
work switch buffer, leading to dropped packets and lower
read throughput than expected.

When a packet is dropped, TCP waits for at least RTOmin

time before retransmitting the packet. This in turn de-
lays the client’s request for next block of data. The ratio
of TCP’s RTOmin (typically 200ms) to the time taken to
transfer the data blocks is high. Consequently, synchronized
packet losses and timeouts result in large network idle times
leading to TCP throughput collapse. The iSCSI applica-
tion demonstrated above is one instance of a more general
class of cluster-based applications which generate barrier-
synchronized traffic such as parallel I/O in cluster file sys-
tems [4, 26, 33], parallel back-end responses to search queries
in memcached clusters [23], or in parallel query processing in
distributed databases.

2.2 Throughput Collapse with Non-TCP Flows
We now show that even in the absence of synchronized

traffic, the presence of traffic that is not responsive to con-
gestion can lead to throughput collapse in Gigabit Ethernet.
Figure 1(a) shows a setup where five different hosts send a
mix of TCP and UDP network traffic to a common receiver
on another host. Each sender uses the netperf [27] bench-
mark to generate either TCP or UDP traffic to a netperf

server on the receiver. Figure 3 shows the total (aggregate)
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Figure 3: Collapse at 1Gbps link in Fig 1(a).
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Figure 4: Collapse at 10Gbps link in Fig 1(b).

received throughput as the number of UDP senders is in-
creased and, correspondingly, the number of TCP senders is
decreased. All five senders transmit without any coordina-
tion. When all five senders transmit TCP traffic, the total
throughput is more than 900Mbps. As we increase the num-
ber of UDP senders in the mix, we see an immediate drop
in the total received throughput.

The figure also shows that the link utilization at the re-
ceiver’s 1Gbps link (measured using tcpdump) varies between
800Mbps to 1Gbps. Since the MTU size is 1.5KB, but the
netperf UDP senders transmit 64KB application-level mes-
sages, dropping even a single 1.5KB packet leads the receiver
to discard the entire 64KB message. Thus, in spite of a high
link utilization, the application-level throughput suffers.

Finally, Figure 3 plots the average per-flow TCP through-
put, i.e. the total netperf TCP throughput divided by num-
ber of TCP flows. Once UDP senders start transmitting,
the average per-flow TCP throughput drops to a negligible
share because the TCP flows reduce their sending rate in
response to packet losses, but UDP does not. This prob-
lem is precisely why TCP was designed. However, not all
network traffic in the cluster may be congestion responsive
or TCP-friendly and even a moderate amount of non-TCP
traffic can significantly lower the throughput of TCP flows.

To demonstrate further, Figure 1(b) shows another exper-
imental setup where 13 senders on different hosts send a mix
of TCP and UDP netperf traffic to 13 receivers, again on
separate hosts. We connect each sender via a 1Gbps link
to one Nortel 4526-GTX switch. Similarly, we connect each
receiver to another Nortel switch. The two switches are con-
nected to each other by a 10GigE optical link via their XFP
transceiver modules. The plots in Figure 4 shows the total
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Figure 5: Topology for short TCP flow experiment.
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Figure 6: Throughput collapse for a long-lived TCP
flow due to multiple short-lived TCP flows.

received throughput across all receivers via the 10Gbps link.
As we increase the number of UDP senders (and correspond-
ingly decrease the number of TCP senders), there is a steep
drop in the total received throughput due to congestion at
the first switch. As with the previous experiment, we again
observe that both the application-level throughput and the
average per-flow TCP throughput collapses with increasing
UDP senders. This experiment shows that simply replacing
1Gbps hardware (switches, links, and network cards) with
their 10Gbps counterparts will not solve the network conges-
tion problem. If anything, it could worsen the problem since
a single end-host, possibly running multiple VMs, will be
more likely to quickly saturate a 10Gbps pipe originating
from its NIC.

2.3 Throughput Collapse with Short TCP Flows
We now show that throughput collapse is possible even in

clusters that primarily carry TCP traffic. It has been shown
in [21] that numerous concurrent short-lived TCP flows, that
are common in cloud computing platforms [13], have similar
effect on network congestion as UDP traffic does, leading
to low link utilization and throughput collapse for compet-
ing long-lived TCP flows. Each short-lived TCP flow sends
a burst of data during its slow-start phase, after which it
terminates without ever reducing its congestion window.

To reproduce this behavior, we developed a traffic gen-
erator, which we call shorttcp, that creates K parallel se-
quences of consecutive short-lived TCP flows between two
nodes. After connection establishment, each TCP flow trans-
mits 30KB of data and terminates, followed by another short
TCP connection and so on.

For this experiment, we set up a network topology as
shown in Figure 5. Sender S1 sends a long-lived netperf

TCP flow to receiver R1. Simultaneously, sender S2 sends
short-lived shorttcp traffic to receiver R2. The netperf and
shorttcp traffic flows contend for the 1Gbps common uplink
between the two switches. Figure 6 shows the throughput
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Figure 7: ping RTT fluctuation during congestion.

observed for the long-lived netperf flow as the number of si-
multaneous sequences of short-lived TCP flows (K) is varied
from 0 to 400. As K increases, netperf throughput drops
from 940Mbps to 89Mbps. Correspondingly, the total re-
ceived throughput for all flows collapses from 940Mbps to
280Mbps, demonstrating the throughput collapse effect.

2.4 Impact of Congestion on Response Times
Here we demonstrate that Ethernet congestion could lead

to significant variations in network response times, which
is detrimental to latency-sensitive applications such as E-
commerce and financial transactions. We conducted a sim-
ple experiment over the topology shown in Figure 1(b) by
measuring the round-trip time (RTT) reported by the ping

command (ICMP echo/response) in the absence and pres-
ence of background network traffic. Without background
network traffic, the ping command reported an almost con-
stant RTT of 86µs. When the 10Gbps optical link is satu-
rated with background network traffic, consisting of a mix of
TCP and UDP netperf traffic between different sender and
receiver nodes, the RTT reported by ping fluctuates heavily
between 100µs and 20 milliseconds, as shown in Figure 7.
While this result is somewhat expected, the experiment un-
derscores the fact that without some form of transmission
coordination between end-systems, the RTT could experi-
ence significant fluctuations during times of congestion.

3. XCO: DESIGN AND IMPLEMENTATION
This section presents the design and implementation of

the XCo framework for preventing Ethernet congestion. Al-
though presented in the context of Xen [3] virtualization
platform, the fundamental concepts presented here are ap-
plicable across different virtualization technologies.

3.1 Overview of XCo Framework
XCo works by preventing multiple end-hosts from sending

too much data at the same time. The cluster administra-
tor may not have complete control over the type of traffic
VMs generate, such as in a subscriber-based cloud comput-
ing model where different external users may own individual
VMs. The cluster administrator also may not have the free-
dom to modify the application or operating system image
within each VM. However, the cluster administrator does
have control over a privileged VM (such as Domain 0 in
Xen), which can intercept, monitor, and control the traffic
being transmitted from all other VMs in a host machine.

Figure 8: High-level architecture of XCo.

Figure 8 shows one central controller that resides in the
same switched network as the other nodes. The central con-
troller could be mirrored by a hot-standby node for fault-
tolerance. The central controller takes as input (i) the switch
interconnection topology and link capacities, (ii) the loca-
tion of VMs on physical nodes, and (iii) the current traffic
matrix of the network. Whenever the central controller de-
tects congestion buildup at any link, it computes and gener-
ates transmission directives (or explicit permissions to send)
to local coordinators at each end-host that is contributing
to the congestion.

Each local coordinator intercepts and regulates the outgo-
ing traffic aggregates from all VMs within the end-host and
provides traffic feedback to the central controller. For dis-
cussions in this paper, a traffic aggregate is defined at the
granularity of a VM-to-VM flow, or a V2V flow, i.e. traf-
fic from one VM to another VM. Our prototype presently
identifies V2V flows using source-VM and destination-VM
IP address pairs.

At a high level, V2V flows traverse bottleneck links in the
network and local coordinators regulate the V2V flows that
contribute to congestion. The specific regulation pattern is
dictated by transmission directives, or explicit instructions,
from the central controller to each local coordinator every
few milliseconds. Transmission directives could take many
forms. For example, a transmission directive could take the
form of explicit timeslice scheduling, such as“which V2V flow
transmits packets when and for how long.” Or a transmission
directive could be explicit rate limiting, such as“at what rate
should a V2V flow transmit for the next N milliseconds.” Or
the directives could be a combination of both or any other
form suited to the performance objectives.

Our rationale for using a central controller to coordinate
transmissions among potentially thousands of nodes is that
data center clusters are already tightly coupled with exten-
sive central monitoring and control. For example, central-
ized control has played a key role in recent large-scale de-
ployments of storage [12] and data processing systems [9]
in the scale of tens of thousands of machines. Similarly,
Hedera [2] and Ethane [6] are centralized flow-scheduling
systems for data center and enterprise Ethernets. Never-
theless, the framework proposed in this paper could likely
be adapted to a distributed implementation for situations
where requirements preclude centralized control.

In theory, if the central controller can carefully coordinate
the transmission activities of all V2V flows across the data
center, then one could precisely control the extent of net-
work load at each link in the switched network. Of course,



Figure 9: Timeslice scheduling for Figure 1 setup.
Value of 1 indicates that the corresponding sender
is allowed to transmit during the timeslice.

there are a number of practical challenges to implementing
such a network-wide transmission control. In this paper,
we investigate these challenges through one form of central
coordination, namely timeslice scheduling.

3.2 Timeslice Scheduling
The central controller temporally divides network trans-

mission into timeslices and explicitly decides which V2V
flows transmit in each timeslice. The goal is to prevent ex-
cessive concurrent transmissions that can potentially cause
congestion in some part of the switched network, while per-
mitting sufficient network activity to achieve high utilization.
When a scheduling event (defined in Section 3.2.1) occurs,
the central controller computes and sends transmission di-
rectives to one or more local coordinators indicating which
V2V flows are eligible to transmit during that timeslice. The
timeslice granularity is small, in the order of 1ms to 10ms.

For example, consider the setup shown in Figure 1(a)
where the common receiver is susceptible to throughput col-
lapse. In this case, when the central controller detects that
the link utilization is close to its full capacity, it permits
only one of the competing V2V flows to transmit at a time.
Thus the central controller sends the transmission directive
shown in Figure 9(a) every 10ms, permitting only one V2V
flow to proceed in each slot.

Similarly, consider the setup shown in Figure 1(b) where
the output port leading to the 10Gbps uplink is congested.
In this case, it would be inefficient to allow only one V2V
flow in each timeslice since each end-host is capable of trans-
mitting at a maximum of only 1Gbps. Hence the central
controller permits up to 10 V2V flows to transmit simulta-
neously in each timeslice by sending the sequence of trans-
mission directives shown in Figure 9(b).

Distributed Work Conservation: Some nodes may
finish with their timeslice early, leaving unused capacity at
the bottleneck link. To prevent network under-utilization
in such cases, we designed timeslice scheduling to be work-
conserving [36]. The local coordinator gives up its unused
timeslice back to the central controller. The central con-
troller then permits another node to transmit. To avoid
giving up a timeslice too quickly, the local coordinator intro-
duces a small hysteresis delay (few tens of microseconds) be-
fore returning the unused timeslice, hoping that more pack-
ets might arrive during the delay.

3.2.1 Timeslice Scheduling Algorithm
We now present an algorithm for timeslice scheduling that

generalizes the above approach for an arbitrary Ethernet
topology and dynamic communication pattern among nodes.

Notations and Assumptions: Consider a network with
a set N of physical nodes (end-hosts). Each node can host
one or more VMs. Assume that the central controller knows
the interconnection topology of all the layer-2 switches in the

network, which could be arbitrary. There are L links in the
network topology. A link from a i to j is represented by an
ordered pair (i, j), where i and j could be either switches or
end-hosts. Conversely, the link in the reverse direction from
j to i is represented by (j, i), although physically a single
bidirectional cable might connect the two nodes. Assume
that the central controller has knowledge of the subset of
links ST which constitute the spanning tree among switches
at any point in time. This information can be queried from
modern managed switches via their management interfaces.
The transmission capacity of link (i, j) is represented by
Cij . For ease of exposition, the capacity of the outgoing
link Cxj from an end-host x to switch j is represented by
Cx (assuming there is only one outgoing link per end-host).
Given the spanning tree ST , we pre-compute the path Psd

from every source node s to every other destination node d
in the network.

Psd = { (i, j) | (i, j) lies in the path from s to d in the
spanning tree ST }

Backlog Group: Bx of a node x is the set of destination
nodes for whom x has backlogged V2V flows, i.e. V2V flows
that have packets in their queues ready to be transmitted. A
backlogged node x is a node with a non-empty backlog group
Bx. Each node x updates and reports its backlog group Bx

to the central controller whenever any one of its V2V flows
changes from a non-backlogged to backlogged state.

Transmission Directive: Upon every scheduling event,
the central controller computes and sends transmission di-
rectives to one or more nodes in the network. For timeslice
scheduling, a transmission directive to a source node s is de-
fined as the single destination node Ds to which s is allowed
to send during the next timeslice at full outgoing link capac-
ity Cs. Node s then allows all V2V flows having destination
in Ds to transmit. If Ds = null, then s is not allowed to
transmit in the next timeslice.

A scheduling event is one of the following occurrences:

1. The timeslice of a currently scheduled node expires
(via a timer expiry at central controller).

2. A node s voluntarily gives up its unused timeslice for
work-conservation through an explicit message to the
central controller. This event indicates that s does
not have any more packets to send to the destination
Ds. Both node s and the central controller remove
destination Ds from the backlog group Bs.

3. A previously non-backlogged node s (with Bs = ∅)
becomes backlogged (Bs 6= ∅) and sends its new (non-
empty) backlog group Bs to the central controller.

A contention group βij is the set of nodes with back-
logged traffic whose path includes link (i, j).

βij = { s | ∃d where d ∈ Bs and (i, j) ∈ Psd }

The contention groups βij are updated by the central con-
troller every time a new backlog set Bs is reported by a node.
The active contention group αij is the set of nodes ac-
tively sending traffic through link (i, j) at any instant. αij

is a subset of βij

αij = { s | Ds 6= null and (i, j) ∈ PsDs }

Feasibility Condition: A link (i, j) will not experience
congestion if the sum of all traffic allowed through the link



Algorithm 1 Algorithm to compute transmission directive
upon a scheduling event.

1: Input: (a) Current spanning tree ST
2: (b) Maximum link capacity Cij∀(i.j) ∈ ST
3: (c) Pre-computed paths Pxy∀ nodes x, y
4: (d) Current backlog group Bx∀ nodes x
5: (e) Current contention group βij∀ links (i, j)
6: (f) Current active contention group αij∀ links (i, j)
7: (g) Last transmission directive Dold

x ∀ nodes x
8: (h) Type of scheduling event
9: (i) Node t which triggered the scheduling event

10: Output: Next transmission directive Dx for each node
x affected by the scheduling event

11:
12: A := ∅ /*set of nodes affected by scheduling event*/
13: for each node d ∈ Bt do
14: for each link (i, j) ∈ Ptd do
15: A := A ∪ βij

16: end for
17: end for
18: if Dold

t 6= null then
19: for each link (i, j) ∈ PtDold

t
do

20: αij := αij − {t}
21: end for
22: if (scheduling event = work conservation) then
23: Bt := Bt − {Dold

t } /*t has no backlog to Dold
t */

24: end if
25: end if
26: N := ∅ /*set of nodes with new schedule*/
27: while A 6= ∅ do
28: x := some node in A
29: Dx := null
30: for each node d ∈ Bx do
31: for each link (i, j) ∈ Pxd do
32: /*Check feasibility condition*/
33: if F ({x} ∪ αij , Cij) = false then
34: Skip to next d in line 30
35: end if
36: end for
37:
38: Dx := d /*d satisfies feasibility at each link*/
39:
40: if Dold

x 6= null then
41: /*x will stop transmitting to Dold

x */
42: for each link (i, j) ∈ (PxDold

x
− PxDx) do

43: αij := αij − {x}
44: A := A ∪ (βij − N) /*more nodes affected*/
45: end for
46: end if
47: for each link (i, j) ∈ Pxd do
48: αij := αij ∪ {x}
49: end for
50: break;
51: end for
52: A := A − {x}
53: if Dx 6= null then
54: /*newly scheduled; don’t reschedule again*/
55: N := N ∪ x
56: end if
57: end while
58: for each x ∈ N do
59: Send Dx to x
60: Dold

x := Dx

61: end for

does not exceed its capacity Cij . Formally, the feasibility
condition F (αij , Cij) is defined as follows:

F (αij , Cij) :
X

∀x∈αij

Cx ≤ Cij (1)

Scheduling Algorithm: The central controller uses Al-
gorithm 1 to compute transmission directives upon every
scheduling event. The algorithm computes and maintains
the affected set A of nodes whose schedule can potentially
change due to the scheduling event. The main loop of the
algorithm (line 27) iterates over each affected node x, at-
tempting to compute a new transmission directive Dx. For
each destination to which x has backlogged traffic, the algo-
rithm walks the path Pxd. At each link (i, j), it checks the
feasibility condition to test if the link can accommodate an
addition load of Cx. The algorithm selects as Dx (line 38)
the first destination d which is feasible along the entire path
Pxd and then moves on to the next affected node.

Preemption of Active Flows: Observe that an affected
node x could be already busy transmitting packets to Dold

x

while the central controller computes a new transmission
directive Dx. In Algorithm 1, we choose the policy of pre-
empting (stopping) x’s current transmission to Dold

x in fa-
vor of the newly computed destination Dx (lines 41– 45).
Otherwise pathological cases can arise where traffic of some
backlogged V2V flows might be starved indefinitely.

Also note that pre-empting an active flow could release
resource along additional paths in the network. Additional
nodes affected by release of resources along new paths are
added back into the affected set A to possibly recompute
additional transmission directives (line 44). The algorithm
thus tries to maximize the network utilization by allowing
as many nodes to transmit as possible without triggering
congestion at any link.

To avoid pre-empting flows that have just recently been
started, lines 15 and 44 can be modified to exclude from A
nodes that have been active for less than a threshold dura-
tion. Algorithm 1 omits this detail for clarity.

Generating Distinct Successive Schedules: The cen-
tral controller needs to ensure that distinct transmission
schedules are generated across successive scheduling events
and that no backlogged traffic is indefinitely starved. An
astute reader would note that the algorithm might end up
generating the same schedule across consecutive scheduling
events (Dx = Dold

x ) if the order of node traversals in lines 28
and 30 remains fixed. Therefore, the algorithm must tra-
verse the nodes in a different order upon every scheduling
event. Again, Algorithm 1 omits this detail for clarity.

Fairness: Another observation is that the algorithm does
not make any special effort to maintain fairness across flows,
especially TCP-style min-max fairness. We expect that co-
ordinated scheduling would be invoked only when the net-
work is approaching a congested state. Algorithm 1 imple-
ments a policy that considers preventing congestion more
important than maintaining fairness. Alternative schedul-
ing policies could consider flow fairness more important.

Convergence: Finally, despite possible additions to the
affected set A in line 44, the algorithm is guaranteed to
converge because (a) nodes once considered are excluded
from A (line 52), and (b) nodes once successfully scheduled
are tracked (line 55) and not included in A again (line 44).
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Figure 10: Xen networking subsystem in the end-
host and placement of the local coordinator.

3.3 Rate Limiting vs. Timeslice Scheduling
The coordination framework in Figure 8 is flexible enough

to allow for transmission control strategies other than times-
lice scheduling described above. For example, the transmis-
sion directives from the central controller could alternatively
specify the maximum rate at which each V2V flow should
transmit until the next directive. This transmission con-
trol strategy of rate limiting senders differs from timeslice
scheduling in that senders can transmit at any time, but
at a throttled rate specified by the central controller. This
can allow the central controller to dynamically throttle the
transmission rates of each node, depending upon per-link
traffic conditions. For comparison, we implemented a sim-
ple rate limiting policy in which the rate assigned to each
V2V flow is the capacity of the bottleneck link divided by
the number of senders through the bottleneck. Our prelimi-
nary evaluations in Figures 12, 13, and 14 indicate that rate
limiting does improve the received throughput but remains
susceptible to throughput collapse with increasing number
of senders. A detailed investigation of more sophisticated
rate limiting strategies remains part of our future work.

3.4 Implementation Details
Due to requirements of low-overhead and time-sensitive

operations, both central controller and local coordinators
are implemented as kernel modules in Linux/Xen architec-
ture. We first present a background of the Xen networking
subsystem and then describe the implementation issues in
some of the major individual components of XCo.

Xen Network Subsystem Background: As shown in
Figure 10, Xen exports virtualized views of network devices
to each VM, as opposed to real physical network cards. The
actual network drivers that interact with the real network
card execute within Domain 0 – a privileged domain that can
directly access all hardware in the system. The privileged
Domain 0 and the unprivileged VMs communicate by means
of a split network-driver architecture. Domain 0 hosts the
backend of the split network driver, called netback, and the
VM hosts the frontend, called netfront. All netbacks attach
to a software bridge in Domain 0, which multiplexes and
demultiplexes packets from/to the VMs.

Local Coordinator: Without XCo, all outgoing packets
at an end-host would be directly forwarded by the software
bridge in Domain 0 to the native driver for the network in-
terface card (NIC). XCo interposes a local coordinator mod-
ule after the software bridge to control transmissions. Fig-
ure 11 shows the internal architecture of the local coordi-
nator, which performs transmission control across multiple
V2V flows. We first created a custom Linux Traffic Con-

Figure 11: Architecture of the local coordinator.

trol [22] setup in Domain 0. We use Hierarchical Token
Bucket (HTB) queuing discipline (qdisc) as the root queue
communicating with the network card. This root queue is
configured to contain one Priority (PRIO) qdisc for each
V2V flow originating from the end-host. The root HTB
qdisc has a packet classifier which queues each V2V flow’s
outgoing packets in their corresponding PRIO qdiscs. The
root HTB qdisc dequeues packets from these PRIO qdiscs
for transmission over the NIC. We modified the implemen-
tation of PRIO qdisc in Domain 0 to add the local coordina-
tor. For low-overhead communication, the local coordinator
and the central controller communicate directly using a new
layer-3 protocol type for control messages and thus bypass
the overhead of socket-based TCP/IP interface. For times-
lice scheduling, only the PRIO qdiscs of V2V flows which
are permitted in the directive from central controller can
transmit. For rate limiting, each PRIO qdisc transmits at
or below the rate specified in the directive.

Central Controller: The central controller must re-
spond to scheduling events with low latency. Consequently,
we implemented the central controller as a Linux kernel
thread that does nothing but wait for scheduling events,
make scheduling decisions, and send transmission directives
to local coordinators. The kernel thread constantly polls the
system’s high resolution clock (via do_gettimeofday()) to
detect the expiration of a node’s timeslice with a finer gran-
ularity than the default Linux kernel time – jiffy (which
can be anything from 1ms to 10ms).

Synchronization: In timeslice scheduling it is important
for physical nodes to coordinate their transmissions if they
share a bottleneck link. Hence each local coordinator syn-
chronizes its kernel-level “network transmission clock” with
the central controller whenever it receives a transmission di-
rective. Within a timeslice the local coordinator uses the
local high resolution clock (at microsecond granularity) to
track local events.

Dynamic Join/Leave: When a physical node joins the
network, its local coordinator registers itself with the central
controller. Whenever a new V2V flow is started, the local
coordinator sets up its PRIO qdisc. Conversely, whenever a
node shuts down, the local coordinator informs the central
controller which stops scheduling the node’s traffic.

4. PERFORMANCE EVALUATION
We now experimentally demonstrate that XCo can reduce

the impact of congestion-induced performance problems in
each of the problem scenarios outlined in Section 2. The



1 2 3 4 5 6 7 8
Number of iSCSI Servers

100

200

300

400

500

600

700

800

900

1000

R
ec

ei
ve

d 
T

hr
ou

gh
pu

t (
M

bp
s)

Without Coordination
Rate Limiting
XCo Timeslice Scheduling

Addressing the Incast Problem with iSCSI Setup
dd Of Striped 1.1 GB Data With Block Size 1MB Over 1Gbps Link
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Figure 13: Addressing collapse in Fig 1(a).

experimental setups are the same as in Section 2, except that
now we either coordinate the network transmissions using
XCo’s timeslice scheduling or throttle the transmissions via
rate limiting. All timeslices are either 2ms or 10ms.

4.1 Addressing Incast Problem
Recall the experimental iSCSI setup described earlier in

Section 2 Figure 1(a) – a storage client (iSCSI initiator)
reads 1.1GB of data that is striped using RAID0 configura-
tion over multiple storage servers (iSCSI targets). In Fig-
ure 2, we demonstrated the Incast problem which causes a
steep drop in the received throughput at the iSCSI client
with increasing number of iSCSI targets. Here we show
that XCo can address the Incast problem by explicitly (and
transparently) coordinating the concurrent transmission ac-
tivities of multiple senders. Figure 12 shows that timeslice
scheduling yields the highest receive throughput. Rate limit-
ing provides a better received throughput than having no co-
ordination at all, but worse than timeslice scheduling. This
is because merely reducing the transmission rate does not
appear to eliminate transient overload of switch buffers. An
initial reduction in observed throughput for smaller number
of servers is likely due to inefficiencies in our implementation
of distributed work conservation.

4.2 Throughput Collapse with Non-TCP Flows
Now we reconsider the problem of throughput collapse

due to non-TCP traffic demonstrated earlier in Figures 3
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Figure 14: Addressing collapse in Fig 1(b)
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and 4. Recall Figure 1(a) where the common receiver is sus-
ceptible to throughput collapse. Figure 13 shows that times-
lice scheduling achieves significant improvement in received
throughput when using XCo. The received throughput stays
close to the maximum 1Gbps even as the number of UDP
senders increase. Rate limiting, which throttles each V2V
flow to 1/5Gbps, performs better than having no coordina-
tion, but worse than timeslice scheduling. Furthermore, the
average per-flow TCP throughput remains steady at close
to 200Mbps, despite the presence of UDP traffic.

Similarly, recall that in Figure 1(b), the 10Gbps uplink
is susceptible to congestion. With timeslice scheduling, the
central controller in XCo permits up to 10 V2V flows to
transmit simultaneously in each timeslice according to the
sequence shown in Figure 9(b). With rate limiting, the cen-
tral controller throttles each sender to 10/13 Gbps. Fig-
ure 14 shows that timeslice scheduling achieves a high ag-
gregate received throughput even as the number of UDP
senders increases. As before, rate limiting performs bet-
ter than no coordination and slightly worse than timeslice
scheduling. Finally, TCP senders maintain their throughput
share even in the presence of UDP senders.

4.3 Throughput Collapse: Short TCP Flows
We showed in Section 2.3 and Figure 6 that large number

of short-lived TCP flows (or mice) can cause unfair through-
put collapse for competing long-lived TCP flows (or ele-
phants) besides reducing the total received throughput. In
this section, we show that XCo can prevent such a through-
put collapse by regulating the network transmissions from
individual end systems. We repeat the same experiment as
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in Section 2.3 with competing long-lived netperf and short-
lived shorttcp traffic. Only this time we configure XCo to
perform timeslice scheduling among the two senders and two
receivers. Figure 15 shows that, with increasing number of
shorttcp sequences, netperf throughput and total received
throughput drop steeply without XCo. However, with XCo,
netperf throughput stabilizes around 430Mbps, slightly less
than half the link bandwidth, and the total received through-
put increases compared to without XCo.

4.4 Improving Round-trip Response Times
Now we demonstrate how XCo can improve the response

times of latency-sensitive applications during times of net-
work congestion. Recall from Section 2.4 that ping RTT
fluctuated heavily in the setup in Figure 1(b) in the pres-
ence of congesting netperf traffic on the common 10GigE
link. To reduce the fluctuation in ping RTT, we applied
XCo to coordinate the transmissions of competing large net-
perf senders from different nodes. Since the ping traffic is a
small flow, the local XCo coordinator at the corresponding
node permits the echo/response packets to be transmitted
without waiting for transmission directive from the central
controller. Figure 16 shows that the resulting ping RTT val-
ues with XCo now vary between 100µs and 2ms, the maxi-
mum value being ten times smaller than without XCo.

4.5 Improving Live VM Migration Time
We now use a simple example of live VM migration [8]

to understand the impact of congestion on a virtualized in-
frastructure and the benefits of using XCo. Again consider
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Figure 18: Fairness among competing flows.

the setup in Figure 1(a). We initiate the live migration of
a 256MB idle VM from one of the nodes S1 to R1. Simul-
taneously, we initiate netperf traffic from different num-
ber of senders S2...S5 to R1. We measure the total time
taken to perform live migration as the number of netperf
senders is increased. In Figure 17, plots labeled “Migra-
tion + TCP” and “Migration + UDP” show the total migra-
tion time without XCo when all competing netperf senders
transmit either TCP or UDP traffic respectively. We see
that in the presence of even one or more competing netperf

UDP senders, the total migration time increases exponen-
tially since UDP dominates any available uplink bandwidth.
Even when only TCP senders compete, there is still a sig-
nificant increase in total migration time. Even though all
TCP sessions back off during congestion, this does not com-
pletely eliminate transient overload of switch buffers. When
using XCo, the plots labeled “... + Timeslice” show that the
live VM migration time is far less with XCo for both UDP
and TCP senders. Although there is still an increase in mi-
gration time, the increase is linear and there is almost no
difference between the cases of competing TCP and UDP
sessions. With competing TCP traffic, the difference be-
tween VM migration times with and without XCo can be
explained by the observation that link utilization without
XCo was less than 500Mbps whereas that with XCo was
around 950Mbps. This indicates that, without XCo, TCP
senders backoff due to increased packet drops resulting in
lower network utilization.

4.6 Fairness Among V2V Flows
To evaluate the extent of fairness enabled by XCo, we

conducted an experiment with 2 UDP senders competing
with 3 TCP senders that transmit data at maximum pos-
sible rate across a 1Gbps bottleneck link. Without XCo,
Figure 18 shows that UDP dominates the link bandwidth
at the expense of TCP’s throughput. With XCo, the TCP
flows are able to obtain approximately the same share of bot-
tleneck link bandwidth as the competing UDP flows. Note
that fairness enabled by XCo in our current implementa-
tion is not max-min fairness, particularly for topologies that
are more complex the the simple one evaluated above. This
is due to the manner in which the central controller cycles
among backlogged flows to avoid starvation and also due to
the possibility that a V2V flow might traverse multiple con-
gested links that are subject to different transmission sched-
ules. However, note that if central coordination activates
only during congestion, then maintaining high throughput
could be more important than guaranteeing fairness.
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4.7 Work Conservation
To demonstrate the benefits of work conservation, we con-

ducted an experiment where five UDP senders transmitted
to five receivers across a 1Gbps bottleneck link. Three of
these flows transmit at 50Mbps and two flows transmit at
the maximum available bandwidth. Figure 19 shows the
bandwidth achieved without XCo, with XCo but without
work conservation, and with XCo and work conservation.
When XCo is enabled, total link utilization markedly im-
proves from around 300 Mbps to more than 500Mbps. When
work conservation is also enabled, the total link utilization
increases to more than 800Mbps, since the spare capacity
from the three throttled UDP senders is distributed among
the two unrestricted UDP senders. Note that even though
complete fairness is not maintained in our implementation of
work conservation, received throughput of all flows increases
over the case without XCo.

4.8 Responsiveness
We now examine the responsiveness of XCo in scheduling

packets from V2V flows that newly arrive or begin trans-
mitting again after a quiet (non-backlogged) period. There
are two overheads that affect the responsiveness of XCo to
dynamic V2V flows. First is the overhead of creating a clas-
sification queue for a new V2V flow for the first time. When
a new V2V flow is detected by the local coordinator, our
current implementation uses a user-level script in Domain
0, which invokes system commands to classify and queue
the packets from the V2V flow based on source-destination
IP addresses. We observed that it takes a one-time overhead
of 75ms from the arrival of the first packet to the creation
of queue for the new V2V flow.

Second is the overhead of re-acquiring the schedule from
the central controller when a quiet V2V flow suddenly starts
transmitting again. To measure this overhead, we conducted
an experiment with six VMs in one node. Three of the six
VMs transmit UDP packets for 2 seconds to a common re-
ceiver and then stop. Next other three VMs transmit for
2 seconds and then stop. And so on back and forth. Fig-
ure 20 shows the time series graph plotting aggregate band-
width (averaged over 1ms time intervals) at the receiver’s
link during the transition from one set of VMs to another.
The aggregate throughput drops for less than 10ms during
the transition before recovering to peak bandwidth. This
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Figure 20: Time series graph showing responsive-
ness in switching to newly backlogged flows. Two
sets of 3 V2V flows alternate every 2 seconds. Each
transition between the two sets is less than 10ms.

time includes creating new sender processes in the VMs us-
ing scripts, detecting in the local coordinator that the V2V
flows are again backlogged, communicating a new backlog
set to the controller, and receiving a new transmission di-
rective from the controller. Of the 10ms gap, less than 1ms
is expended on communicating the backlog set to the cen-
tral controller and receiving a new transmission directive.
The rest of the gap is due to creating sender processes and
communicating initial packets to Domain 0.

5. RELATED WORK
Data Center Ethernet Architectures: The Data Cen-

ter Bridging Task Group [16] is developing specifications
for future hardware QoS support in data center Ethernet
fabric through congestion notification, priority based flow
control, and enhanced transmission selection. Virtual LANs
(VLAN) [15] are extensively used to set up logical layer-2 iso-
lation across virtual clusters. However, VLANs do not pro-
vide any congestion control or QoS. Hedera [2] is a central-
ized flow scheduling system for multi-stage switch topologies
in data centers that maximizes aggregate network utiliza-
tion. A central scheduler collects information about larger
flows from network switches, computes non-conflicting paths
for flows, and manipulates the forwarding tables of the switches
to re-route selected flows. Like XCo, Hedera uses a global
view of network traffic to determine and alleviate bottle-
necks that local schedulers cannot. Unlike XCo, which does
not modify the switch forwarding tables, Hedera relies on
manipulation of switch forwarding tables to perform multi-
path routing. Viking [32] and SPAIN [24] construct VLAN-
based multiple spanning trees in commodity Ethernet to im-
prove both aggregate network throughput and failure recov-
ery. Like XCo, they rely on a central controller to gather
traffic load information and (re)configure the spanning trees.
Unlike XCo, which controls traffic at millisecond granular-
ity, Viking performs long-term monitoring and VLAN con-
trol (given that VLANs cannot be reconfigured at a high fre-
quencies in most commodity switches), whereas SPAIN only
performs offline pre-computation of VLANS. Other projects
that advocate the use of a central controller include Ethane [6]
for flow scheduling in enterprise networks and the Route
Control Platform [5] for routing in wide-area ISP networks.
[1, 13, 20, 25] propose alternative forwarding and routing
designs to traditional spanning-tree based Ethernet archi-



tectures for data centers. Their objective is to improve
fault-tolerance, scalability, and cross-sectional throughput of
multi-tiered data center Ethernet topologies through tech-
niques such as improved forwarding logic in switches, multi-
path routing for load balancing, and reducing layer-2 broad-
casts among others. Instead of relying upon sweeping changes
to major aspects of Ethernet design or runtime operations
(which have their own value but may be impractical in cer-
tain settings), XCo chooses a narrow focus of preventing
congestion across commodity Ethernet fabric, purely by co-
ordinating the transmission activities among end-points.

TCP Throughput Collapse: Also known as Incast
problem, TCP throughput collapse was first described in [26]
in the context of parallel file systems. The problem was
addressed at the application level by limiting the number
of servers communicating concurrently with the client and
by reducing the advertised TCP receive buffer size. Work
in [28] examined a number of TCP improvements to address
the Incast problem, concluding that while throughput some-
times improved, none of them substantially prevented TCP
throughput collapse. Subsequent work [35, 7, 9] showed that
reducing TCP’s minimum RTO can help maintain a high
throughput, albeit only postponing throughput collapse to
a different performance point. Additionally, too small a min-
imum RTO can lead to spurious timeouts for wide-area net-
work traffic. In addition, none of the TCP-specific solutions
to the Incast problem address the case where a large num-
ber of short-lived TCP bursts and non-TCP traffic might
share the Ethernet fabric, causing severe unfairness to TCP
traffic. Timeslice scheduling in XCo can prevent throughput
collapse under all scenarios, irrespective of the mix of long-
lived TCP, short-lived TCP, and non-TCP traffic sharing
the network fabric.

Distributed Rate Limiting (DRL): DRL [29, 34] en-
forces global rate limits on aggregate traffic used by geo-
graphically distributed cloud services, through a set of col-
laborating rate limiters. XCo also explicitly limits traffic
from nodes, although within a data center cluster. Further,
XCo differs in its motivation, namely preventing Ethernet
congestion, rather than enforcing resource usage limits.

Finally, this work significantly extends our workshop pa-
per [30] with additional algorithm design, implementation
effort, and extensive experiments evaluating Incast, short
TCP flows, fairness, work-conservation, and responsiveness.

6. FUTURE WORK
While this work highlights the potential of XCo in address-

ing Ethernet congestion, a number of challenges remain.
Empirical Studies: In this paper, we used simple net-

work setups to study the potential benefits of XCo. More
detailed empirical studies are required to evaluate the perfor-
mance of timeslice scheduling algorithm on complex topolo-
gies with multiple bottlenecks, and to evaluate network uti-
lization and starvation avoidance of timeslice scheduling.

Scalability: While there is evidence [6] that central con-
trollers are preferable in managing large clusters, one could
possibly investigate alternative designs involving multiple or
hierarchical controllers for scalability. We are developing
NS3 [14] simulations to study the scalability of XCo for thou-
sands of nodes under multi-tiered multi-rooted data center
topologies. Such simulations rely on accurate models of real-
world network switches under congestion scenarios, which
the current NS3 switch models do not provide.

Active and On-demand Coordination: While our
current prototype coordinates the entire network, the XCo ar-
chitecture is amenable to controlling congestion in an“active
and on-demand” fashion. In other words, since central co-
ordination is unnecessary when the network is uncongested,
XCo can trigger central coordination only during times of
network congestion. This requires accurate and proactive
measurement and feedback of the traffic matrix to the cen-
tral controller from potentially thousands of local coordina-
tors. Even during congestion, the central controller need not
impose coordination on all V2V flows. The local coordina-
tors can measure and report only the large V2V flows, which
can then be regulated by the central controller without lim-
iting transmissions from other well-behaved flows. The rule
of thumb is that central controller should attempt to impose
minimal necessary constraints on transmissions and only to
prevent congestion where necessary.

Fault Tolerance: Three major types of failures must
be addressed in XCo: controller failure, end-host failure,
and loss of transmission directives. Failure of a central con-
troller(s) does not need to imply that network activity comes
to a halt. If the local coordinators do not receive a trans-
mission directive from a central controller for a certain time,
they could switch to uncontrolled transmission to keep their
network activities alive. Non-arrival of multiple successive
directives could indicate to a local coordinator that either
the central controller has failed, or that the network is par-
titioned. The central controller can also be mirrored by a
hot-standby node to provide non-stop operations. Central
controller can also delete V2V flows from its schedule if that
node’s local coordinator fails to send periodic feedback.

Alternative Coordination Strategies: The XCo frame-
work admits of several alternative coordination strategies
that could provide better performance. For instance, our
current definition of the feasibility condition in timeslice
scheduling implies that if any node x has an outgoing link
capacity Cx that is greater than the bottleneck link capacity
to a destination, then x cannot transmit during congestion.
This limitation could be overcome by a hybrid of timeslice
scheduling and rate-limiting in which each V2V flow can be
rate-limited within individual timeslices. Other coordina-
tion strategies could enforce QoS among flows by allocating
differentiated transmission rates and/or timeslice lengths.

7. CONCLUSION
This paper makes the case that virtualization offers new

opportunities to alleviate congestion in data center Ether-
net. We present the design, implementation, and evaluation
of a prototype system, called XCo, that explicitly coordi-
nates network transmissions from virtual machines across a
cluster’s Ethernet infrastructure. A central controller issues
transmission directives to individual nodes at fine-grained
timescales (every few milliseconds) to temporally separate
transmissions competing for bottleneck links. We offer ev-
idence through extensive evaluations that such explicit co-
ordination has the potential to prevent congestion-induced
performance problems in today’s unmodified Gigabit and
10GigE switched Ethernet. Our techniques require no changes
to the VMs, applications, protocols, or the network switches.
Future work includes evaluating more complex topologies,
scalability, on-demand coordination, fault-tolerance, and al-
ternative coordination strategies.
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