New Parallel Algorithms for Direct Solution of Sparse

Linear Systems : Part I - Symmetric Coefficient Matrix

Kartik Gopalan C. Siva Ram Murthy *

Department of Computer Science and Engineering
Indian Institute of Technology
Madras 600 036, India

e-mail: murthy@iitm.ernet.in

Abstract

In this paper, we propose a new parallel bidirectional algorithm, based on Cholesky
factorization, for the solution of sparse symmetric system of linear equations. Unlike
the existing algorithms, the numerical factorization phase of our algorithm is carried
out in such a manner that the entire back substitution component of the substitution
phase is replaced by a single step division. Since there is a substantial reduction in
the time taken by the repeated execution of the substitution phase, our algorithm is
particularly suited for the solution of systems with multiple b-vectors. The effectiveness
of our algorithm is demonstrated by comparing it with the existing parallel algorithm,
based on Cholesky factorization, using extensive simulation studies.

In Part II of this paper, we propose a new parallel bidirectional algorithm, based on
LU factorization, for the solution of general sparse system of linear equations, having
non-symmetric coefficient matrix.

Key Words: Linear Equation, Sparse Symmetric System, Cholesky Factorization,
Parallel Algorithm, Bidirectional Scheme, Multiprocessor.

1 Introduction

The problem of solving large sparse systems of linear equations arises in various applications

such as finite element analysis, power system analysis, and circuit simulation for VLSI CAD.

* Author for correspondence.



In this paper, we consider the problem of solving sparse symmetric system of linear equations
of the form Ax = b, where A is a sparse symmetric coefficient matrix of dimension N x N,
and = and b are N-vectors. Traditionally, the process for obtaining the direct solution for
a sparse symmetric system of linear equations, Ax = b, involves the following four distinct

phases.

e Ordering : Apply an appropriate symmetric permutation matrix P such that the new
system is of the form (PAPT)(Pz) = (Pb).

e Symbolic factorization : Set up the appropriate data structures for the numerical fac-

torization phase.
e Numerical factorization : Determine the Cholesky factor L such that A = LLT.

o Substitution : Determine the solution vector x by first solving the forward triangular
system Ly = b and then solving the backward triangular system L7z = v.

For solution of multiple b-vectors, the first three phases are carried out only once to
obtain the Cholesky factor L. The substitution phase is then repeated for each b-vector in
order to obtain a different solution vector x in each case. Thus, in problems which involve
solution of multiple b-vectors, the time taken by repeated execution of substitution phase
dominates the overall solution time. Any parallel formulation, which can reduce the time
taken by the substitution phase, will contribute significantly to enhanced performance of the
entire process.

Although traditional approaches to parallel solution of sparse symmetric system of linear
equations have yielded efficient parallel algorithms for the numerical factorization phase
[1, 2, 7, 11, 15, 21], not much progress has been made in the case of substitution phase
due to the limited amount of parallelism inherent in this phase. Moreover, the forward
and backward substitution components of the substitution phase require different parallel
algorithms due to the manner in which data is distributed over various processors. Existing
work on parallel formulations for this phase can be found in [6, 12, 14].

In Part I of this paper, we present a new bidirectional algorithm, based on Cholesky
factorization, for the solution of sparse symmetric system of linear equations. In our algo-
rithm, the numerical factorization phase is carried out in such a manner that the entire back
substitution component of the substitution phase is replaced by a single step division. The
bidirectional algorithm, based on LU factorization, for the solution of general sparse system
of linear equations, is presented in Part II of this paper. The application of the novel concept

of bidirectional elimination to dense linear systems can be found in [19, 20].



The rest of the paper is organized as follows. In section 2, we present the bidirectional
sparse Cholesky factorization algorithm for sparse symmetric matrices. In section 3, we
present the bidirectional algorithm for the substitution phase which does not have a back
substitution component. In section 4, we develop a bidirectional heuristic algorithm for
ordering on the lines of the popular nested dissection ordering algorithm [4, 5] for sparse
symmetric matrices. In section 5, we describe a symbolic factorization algorithm which sets
up data structures required by the bidirectional Cholesky factorization phase. In section 6,
we evaluate the performance of the bidirectional algorithm on hypercube multiprocessors
and present comparison of our algorithm with the existing scheme based on sparse Cholesky
factorization. In section 7, we conclude this paper with some observations about possible

future improvements to the bidirectional scheme.

2 The Bidirectional Sparse Cholesky Factorization (B-
SCF) Algorithm

Unlike the regular Cholesky factorization algorithm which factorizes A to obtain the lower
triangular matrix L, such that A = LLT, the BSCF algorithm factorizes A into a series of
trapezoidal matrices of multipliers. This series of trapezoidal matrices remove the need for
the back substitution component in the substitution phase.

In this section, we first present an overall view of the concept of bidirectional Cholesky
factorization. We then proceed to describe the manner in which the sparsity of the coefficient
matrix can be exploited to obtain higher degree of parallelism. Following this we present the

details of implementing BSCF algorithm on multiprocessor systems.

2.1 Bidirectional Cholesky Factorization - The Concept

In regular Cholesky algorithm, the lower triangular matrix L is obtained by choosing columns
1 through N of matrix A as pivots so that A = LLT. We name this process as factorization
in forward direction. On the other hand, we can also choose columns N through 1 of matrix
A as pivots and factorize A in a reverse fashion to obtain an upper triangular matrix U
such that A = UTU. We name this process as factorization in backward direction. The

bidirectional Cholesky factorization of the coefficient matrix A proceeds as follows.

e Step 1: We form two matrices, namely Ay and Ay, identical to the coefficient matrix
A. We factorize Ay in the forward direction, but only through the first [%] pivot

columns, to obtain a lower trapezoidal matrix Ly, as shown in figure 1, in which only
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Figure 1: The progression of BSCF algorithm for N =4



the sub-diagonal entries in columns 1 to [%1 are present. Concurrently, we factorize

A; in backward direction, through pivot columns N to [% + 1], to obtain an upper

trapezoidal matrix L, as shown in figure 1, in which only the super-diagonal elements
N

in columns N to |5 + 1] are present,.

e Step 2: We duplicate the reduced matrix Ay to form Ay and Ag;, and also duplicate
the reduced matrix A; to form A, and A;;. The matrices Agy and A;g are factorized
halfway through in the forward direction to produce lower trapezoidal matrices Ly, and
Ly respectively. Similarly, the matrices Ag; and A;; are factorized halfway through in
the backward direction to produce upper trapezoidal matrices Ly, and Lq; respectively.

Note that here we factorize the four matrices Ay, Ag1, A19, and Aq; in parallel.

e Step 3 We continue this process of halving the size of the sub-matrices through si-
multaneous Cholesky factorization in both forward and backward directions and thus
doubling the number of sub-matrices for log NV times. Finally we end up with N sub-

matrices of order 1 x 1.

The bidirectional Cholesky factorization algorithm described above produces a tree of trape-
zoids of multipliers (i.e., L matrices). In the substitution phase, which is described in
section 3, the b-vector, corresponding to which a solution vector z has to be found, is moved
down this tree of trapezoids. At the end of this process each leaf produces an equation with
just one variable which is then solved by a single step division to produce the solution vector

x.

2.2 Exploiting the Sparsity of the Coefficient Matrix A

In regular sparse Cholesky factorization of a coefficient matrix A, column ¢ directly modifies
column j if j > ¢ and A[s, j] # 0. Column 4 indirectly modifies column j if column 7 directly
modifies another column & which in turn modifies column 5 directly or indirectly. Columns ¢
and j are mutually independent if column 7 does not modify column j directly or indirectly.
The mutually independent columns of the sparse matrix can be used as pivots in parallel.
This concept of mutually independent columns can be easily extended to the BSCF
algorithm. At any stage s € {1---log N}, columns i and j (j > ¢ ) are forward independent
if pivot column % does not modify column j directly or indirectly during factorization in
forward direction. The forward independent columns, ¢ and j, can be simultaneously used
as pivots in forward direction. The columns ¢ and j are backward independent if pivot

column j does not modify column ¢ directly or indirectly during factorization in backward



direction. The backward independent columns, 7 and 7, can be simultaneously used as pivots
in backward direction.

In regular sparse Cholesky factorization, the concept of mutually independent columns
can be abstracted with the help of elimination trees. An elimination tree contains a node

corresponding to each column of the coefficient matrix. The parent of a node 7 is defined as
parent(i) = min{j | j > i and L[j,4] # 0}.

The elimination tree defines a partially ordered precedence relation which determines when
a certain column can be used as pivot.

Similarly, in BSCF algorithm, we can abstract the concepts of forward independence and
backward independence by means of forward elimination tree and backward elimination tree
respectively. At some stage s € {1---log N}, let A,y be a sub-matrix being factorized in
the forward direction and A,; be a sub-matrix being factorized in the backward direction (z

being a possibly empty string of 0’s and 1’s). The forward parent of node i, is defined as
fparent(i, Ago) = min{j | j > i and Lylj,i] # 0}.

Similarly, the backward parent of node i, is defined as
bparent(i, Ay1) = max {j | j < i and Ly [j,i] # 0}.

For achieving high degree of parallelism during factorization phase, both the forward and
the backward elimination trees should be as short and wide as possible. This is the function
of the ordering phase (described in section 4).

In the next subsection, we examine the parallel implementation of BSCF algorithm on

multiprocessors.

2.3 Implementing the BSCF Algorithm on Multiprocessors

For our present study, we consider the medium grain model of parallelism in which tasks per-
form floating point operations over nonzero elements of entire columns of coefficient matrix

[18]. The following elementary tasks are considered for the BSCF algorithm.

e fdivide(i,s) divides by 1/ Ayli, 7] every nonzero element of the sub-diagonal part of the
7th column of sub-matrix A,.

e bdivide(i,s) divides by /A7, 7] every nonzero element of the super-diagonal part of
the ith column of sub-matrix A,.



e fmodify(i,vector,s) subtracts the contents of vector from the ith column of a sub-matrix
Az, at stage s € {1---log N}. vector is an appropriate multiple of some column j of

Ao, which modifies column ¢ directly in forward direction at stage s.

e bmodify(i,vector,s) subtracts the contents of vector from the ith column of a sub-matrix
Ay, at stage s € {1---log N}. vector is an appropriate multiple of some column j of
A1, which modifies column ¢ directly in backward direction at stage s.

To keep track of the columns that each pivot should modify at each of the log N stages, we

maintain the following data structures.

° E-(S) denotes the set of all columns with indices smaller than 7 that modify the ith

column in the forward direction at stage s.

° BZ-(S) denotes the set of all columns with indices greater than ¢ that modify the ith

column in the backward direction at stage s.

These data structures are generated during the symbolic factorization phase. This phase is
described in section 5. In the remaining part of this section, we describe the implementation
of BSCF algorithm on a message passing multiprocessor

In Cholesky factorization, if column ¢ modifies column j, then the factor, by which the
modifying column ¢ is multiplied, is an element A[j, i| of the modifying column 7 itself. This
happens due to the symmetric nature of the coefficient matrix being operated upon. Thus,
the multiple of the modifying column can be calculated at the processor storing column ¢
itself and the resulting vector can be sent over to the processor storing column j which needs
to be modified.

When p < N, there might be more than one column at a processor Py, which modifies
column j (i.e., more than one column stored at processor P, might belong to the sets Fj(s) or
B§s)). In place of sending a separate vector as message corresponding to every column at Py
that modifies column j, we can add all these outgoing vectors together and send them as one
vector to the processor storing column j. In this manner, the number of outgoing messages
can be significantly reduced. Note that the above observation applies for modifications in
both forward and backward factorizations.

In algorithm 1 below, we incorporate the above idea in the BSCF algorithm and present
the fan-in BSCF algorithm. The set List,,,q is the set of columns stored in processor
Ppyia- Each processor maintains the sparse vectors fUpdate; and bUpdate; for 1 < j < N.
If column 7 is to modify column j in forward direction at stage s then, after performing

fdivide(i, s) operation, the processor Pp,iq4, which stores the column ¢, adds an appropriate



multiple of column ¢ to the vector fUpdate;. When such an addition has been performed
for all the columns in processor Pp,q that modify column j in forward direction at stage
s, a message containing the fUpdate vector is sent to the processor storing the column j.
Similar mechanism operates for factorization in backward direction.
Algorithm 1 (*The parallel fan-in BSCF algorithm)
begin
for s :=1 to log N do
parbegin
Forward_factorize(List nyiq,5);
Backward_factorize(List ,yiq,S);
parend
end

procedure Forward factorize(List,s)
begin
for i :=0to N — 1 do fUpdate; :=0;
while List # ¢ do
if 3i € List such that fdivide(j, s) has been performed for all j € Fi(s) then
Let column 7 belong to the forward sub-matrix A,y at stage s;
while messages of the form (7, fvector,s) have not been received from
all processors that store columns belonging to FZ-(S) do
recetve messages of the form (i, fvector,s);
fmodify(i, fvector, s);

if column ¢ belongs to the first half of sub-matrix A,y then
fdivide(i, s);
for all j such that i € Fj(s) do
fUpdate; == fUpdate; + Ayolj, 1] X Agol*, i];
if fdivide(k, s) has been done for all k € F{*) N List then
send a message of the form (j,fUpdate;,s)

to processor storing column j;

else if s < log N then
(*copy column ¢ of Ay to column ¢ of A*)
Agoo[*, 1] 1= Agol*,1];
(*copy column ¢ of Az to row ¢ of Agg since only sub-diagonal



parts of the columns of the symmetric matrix A,q are stored*)
for all j such that Ay[j,7] # 0 do
Agor[i, 7] == AqolJ, 1];
List := List — 1;

end

procedure Backward_factorize(List,s)
begin
for i :=0 to N — 1 do bUpdate; :=0;
while List # ¢ do
if 35 € List such that bdivide(j, s) has been performed for all j € Bi(s) then
Let column ¢ belong to the backward sub-matrix A,; at stage s;
while messages of the form (i,bvector,s) have not been received from
all processors that store columns belonging to BZ-(S) do
recetve messages of the form (i,bvector,s);

bmodi fy(i, bvector, s);

if column ¢ belongs to the second half of sub-matrix A,; then
bdivide(i, s);
for all j such that i € B](-s) do
bUpdate; := bUpdate; + Ag1(j, 1] X Agi[*,];
if bdivide(k, s) has been done for all k € B{ N List then
send a message of the form (j,bUpdate;,s)

to processor storing column j;

else if s < log N then
(*copy column ¢ of Az to row ¢ of A, since only super-diagonal
part of the columns of the symmetric matrix A,; are stored*)
for all j such that A[j,7] # 0 do
Agioli, j] == An[J,1];
(*copy column i of A,y to column ¢ of Ayq1%)
Ag1[*,1] := Agi[*, 1];
List := List — 4
end
An important observation is in order in algorithm 1. Let the number of processors p = 2¢

(as in hypercube multiprocessors) and N = 2" (n,d € N, the set of natural numbers).
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in each processor).
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Assume that we map the equations on the processors in a block wrap manner (as shown in
figure 2). Thus each processor holds % = 2"~% consecutive equations. At the end of d = logp
stages of the fan-in BSCF algorithm, each processor contains an independent system of %
equations. This independent system can be factorized within a single processor without any
communication with any other processor. Since, on a single processor, regular sequential
sparse Cholesky factorization performs more efficiently than the fan-in BSCF algorithm,
we can switch over to this regular sequential version after logp stages and factorize the
coefficient matrix (say A;,q) of this independent system into the form A;,q = Li,qLY ;. This
results in enhancing the performance of the fan-in BSCF algorithm. The manner in which
this factorization proceeds is shown in figure 2.

In this figure, we also note that the size of the subset of processors with which any
processor P; communicates, reduces by half with every stage. In stage s = 1, all processors
P, through P, communicate with each other. In stage s = 2, P, and P, communicate only
with each other, and P; and P, communicate only with each other. Thus communication

gets localized with every stage.

3 The Substitution Phase

In this section we present the bidirectional substitution (BS) algorithm. Unlike the regular
algorithm, which consists of two triangular solution components (i.e., the forward substitu-
tion followed by the backward substiution), the BS algorithm consists of only one forward
solution component, which is followed by a single step division to yield the solution vector x.
Following the pattern of the previous section, we first present an overall view of the concepts
behind the BS algorithm. We then proceed to describe the manner in which the sparsity
of the series of trapezoidal factor matrices can be exploited to obtain a higher degree of

parallelism.

3.1 Bidirectional Substitution Algorithm - The Concept

The scheme we propose below is somewhat on similar lines to the parallel column triangular
solver (PCTS) proposed by Li and Coleman in [17]. To find the solution vector z, for a given
b-vector, we begin with two copies of b-vectors by and b;.

e Step 1: The vector by is modified by successive columns of trapezoids of multipliers

Ly (i.e., from column 1 to column [4]). In other words, after modification by column

i — 1, the processor containing column ¢ computes z; as z; = by[i]/Lo[i, i] and modifies

11
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the remaining elements of by-vector as by[j] = bo[j] — Lolj, ?] * z; for all j such that
Ly[j,i] # 0. At the end of updation by Lo, the size of vector by is reduced to half
its original size (see figure 3). Simultaneously, the vector b; is updated by successive
columns of the trapezoidal matrix of multipliers L; in backward direction (i.e., from
column N to column [§] + 1). In other words, after modification by column i + 1,
the processor containing column i computes z; as x; = by[i]/L1[i,i] and modifies the
remaining bj-vector as bi[j] = b1[j] — L1[j, 4] * z; for all j such that Li[j,7] # 0. At
the end of updation by L, the size of vector b; is reduced to half its original size (see
figure 3).

e Step 2: The reduced by is copied to form vectors bgg and bg; whereas the reduced b,
is copied to form vectors big and b1;. The new vectors bgg and by are modified by L
and Ly, respectively in forward direction whereas the vectors by; and by; are modified
by Lg; and Lq; respectively in backward direction. Thus the size of these new b-vectors
gets reduced by another factor of half (see figure 3).

e Step 3 : This process of reducing the size of b-vectors and doubling their numbers
continues for log NV stages by which time there will be N b-vectors of only one ele-
ment each. These N b-vectors, when divided by N elements obtained at the end of

factorization phase, will give N z-vector elements.

3.2 Increasing Parallelism by Exploiting Sparsity

In the above scheme we observe that the process of modifying a b-vector through successive
columns of a trapezoid is inherently sequential and is communication intensive in case the
successive columns happen to reside on separate processors. George et.al. have proposed in
[6], parallel schemes for solving sparse triangular systems resulting from regular Cholesky
factorization. Their scheme is an adaptaion of the corresponding dense algorithm proposed
by Romine and Ortega in [24] and it uses the following inner product form to carry out

forward factorization.

{4/ L[i,51#0}
Since the columns and the corresponding solution components are distributed among the
processors, the inner product computation is partitioned accordingly.
The above concept of distributed computation of inner product can be applied to the BS

algorithm. Consider the case where the vector b,y is to be updated by the trapezoid L,q in

13



the forward direction. Instead of moving the vector b, from left to right across the trapezoid
Lo, each element by[i] is updated as follows. Each processor computes the products of the
elements of the row 7 of the trapezoid that it contains with the corresponding elements of
the solution vector x and sends their sum i.e., the partial inner product, to the processor
containing column 7. Upon receiving the contributions to the inner product from each pro-
cessor, the processor storing the column 7 subtracts them from b,y. If column ¢ belongs to
the first half of the matrix A,y then, after subtracting the complete inner product of row ¢
in Ly from by[i|, the processor storing the column i computes x; = by[i|/Lyo[i,4]. This z;
is then used for calculating the partial inner products of rows j > 7. On the other hand if
the column 7 belongs to the second half then after subtracting the complete inner product of
row ¢ in Ly from by[i], two copies of the element by,[i], namely bygo[i] and byg1[i], are made
for modification at the next stage of the BS algorithm. Similar mechanism operates while
updating a vector b,; with a trapezoid L,; in the backward direction. The complete details
of the BS algorithm are given below.
Algorithm 2 (* The bidirectional substitution algorithm *)
begin
for s :=1 to log N do
parbegin
Forward _modify(List,,yiq,S);
Backward_modify(List,nyid,s);
parend
end

procedure Forward_modify(List,s)
begin
Let b,y be the forward copy of the b-vector to be modified
by trapezoid L,y at stage s.
for ::=1to N do t; := 0;
for all + € List do
for all j such that processor P; has nonzeros belonging to row 4 of L, do
receive message (¢,t) having partial inner product ¢ from processor Pj;
broli] := bao[i] — 2;
if column 7 belongs to the first half of L, then
x; = byoli]/ Lol 1);
for all j such that Ly[j,4] # 0 do
tj ==t 4+ x; * L[], i);

14



if x has been calculated for all k£ such that Ly[j, k] # 0 and
k € List then
send message (j,t;) to processor storing column j;
else if s < log N then
bz00[i] := bgolil;
bzo1[i] := byoli];
else (* s =log N *) x; := byo[i]/Loli];
end

procedure Backward modify(List,s)
begin
Let b,; be the backward copy of the b-vector to be modified
by trapezoid L, at stage s.
for i :=1to N do t; := 0;
for all 7 € List do
for all j such that processor P; has nonzeros belonging to row i of L;; do
receive message (¢,t) having partial inner product ¢ from processor Pj;
ba1li] == bg[i] — ¢;
if column 7 belongs to the second half of L,; then
x; := bp1[4]/ L [i, 1);
for all j such that L,[j,4] # 0 do
tj :=1t; +x;i* Lylj,1);
if z;, has been calculated for all k£ such that L, [j, k] # 0 and
k € List then
send message (j,t;) to processor storing column j;
else if s < log N then
b1o[i] := bz [1];
br11[1] := by [d];
else (* s =log N *) z; := by1[i]/ L i];
end

As in the case of the BSCF algorithm, a special situation arises when p = 2¢ and N = 2"
(n,d € N). After d = logp stages, the BSCF algorithm switches over to the regular sparse
Cholesky factorization and produces triangular factor matrix of the form L;,4 in the last
stage such that A;,q = LiyqLl ;. Thus in the substitution phase, let b;,s be one of the p

reduced vectors after logp stages of BS algorithm. We now switch over to the sequential

substitution algorithm for solving the two triangular systems, Li,qy = bing and LT 2 = y.
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In this manner, we avoid executing excessive number of floating point operations when all
the remaining computations are resricted to occur within individual processors.

In the next two sections, we describe the ordering and the symbolic factorization algo-
rithms that precede the BSCF algorithm.

4 Ordering the Sparse Symmetric Matrix for Bidirec-

tional Factorization

A good initial ordering of a sparse matrix A is crucial to the efficient solution of the sparse
symmetric system Az = b. The basic aim of the ordering phase is to reorder the columns of
the coefficient matrix in such a manner that during the factorization phase, the amount of
fill-in is minimized and the degree of parallelism is maximized. In a parallel environment, the
former aim is not as important as the latter aim since large amounts of memory are available
very cheaply. Various techniques for the ordering phase can be found in [3, 4, 5, 16, 22].

Sparse symmetric matrices chiefly arise from k£ x k regular grids that are encountered in
finite element problems. The principal ordering heuristic used for reordering the matrices
obtained from the regular grid problems is the popular nested dissection ordering method
[4, 5]. The nested dissection ordering yields short and wide elimination trees that are well
suited for parallel factorization algorithms. For regular Cholesky factorization, this ordering
technique satisfies the criteria of both low fill-in and short and wide elimination trees. How-
ever, the nested dissection ordering in its existing form is not suited for the BSCF algorithm
due to reasons given below. Recall that in section 2.2 we defined the concepts of forward
elimination tree and backward elimination tree for the BSCF algorithm. The degree of paral-
lelism while factorizing in forward direction depends on the shape of the forward elimination
tree and that for factorizing in backward direction depends on the shape of the backward
elimination tree. An ideal ordering for the BSCF algorithm is one in which both the elimi-
nation trees are as short and wide as possible. The forward elimination tree obtained from
nested dissection algorithm is short and wide and hence desirable for parallel factorization.
On the other hand the backward elimination tree obtained from nested dissection algorithm
is lean and tall and hence undesirable for parallel factorization.

In the remaining part of this section, with the help of an example of a 7 x 7 grid, we show
why the regular nested dissection algorithm is not suited for BSCF algorithm and then we
describe how it can be modified to yield orderings suitable for the BSCF algorithm.

The nested dissection algorithm begins by recursively dividing a k£ x &k grid into two disjoint

parts using a set of nodes as separator nodes and applying the nested dissection algorithm
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Figure 6: Ordering of a 7 x 7 grid using regular nested dissection ordering

again to the two separated halves. Figure 4 shows the manner in which the separators (S1 to
S15) divide a 7x 7 grid. The recursive division of the grid yields a tree structure of separators
and nodes as shown in figure 5. We call this tree a nested dissection tree. The internal nodes
of the tree are separator blocks and the leaves of the tree are blocks of node(s) at lowermost
level which cannot be further sub-divided using nested dissection. The dimension of such
blocks can be 1 x 1,1 X 2, 2 x 1 or 2 X 2. Such indivisible blocks are called leaf blocks.

In regular nested dissection ordering, all the grid points at the leaf blocks(say at level 0)
are numbered in ascending order. Then the separator grid points at level 1 are numbered,
then level 2 and so on until the grid points at the root separator blocks get numbered. The
ordering resulting from this scheme is shown in figure 6 and the forward and backward e-
limination trees resulting from this ordering are shown in figure 7. As seen from figure 7,
although the forward tree is short and wide, the backward tree is lean and tall. Hence this
ordering is not conducive for good performance of the BSCF algorithm.

We now look at a modification of the regular nested dissection algorithm which produces
orderings that provide reasonably good parallelism properties in both forward and backward
directions. We call this heuristic as the bidirectional nested dissection ordering which pro-

ceeds as follows.
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Figure 9: Ordering of a 7 x 7 grid using bidirectional nested dissection ordering

e Step 1: Carry out the dissection part of the nested dissection algorithm as described

above. This gives a nested dissection tree as shown in figure 5.

e Step 2: At each level of the nested dissection tree, label approximately half of the tree
nodes as white and the other half as black, as shown in figure 8.

e Step 3 : While numbering the grid points, proceed as follows.

1. Keep two counts - whiteCount initialized to 1 and blackCount initialized to k x k.

2. Take a grid point at level 0. If the leaf node to which it belongs is white then
number the grid point as whiteCount and increment whiteCount. Otherwise the
leaf node is black. Hence number the grid point as blackCount and decrement

blackcount.
3. Apply the above step to all grid points of each node at level 0 followed by each

node at level 1 and so on upto the root.

The ordering obtained from this scheme is shown in figure 9 and the corresponding forward
and backward elimination trees are shown in figure 10. As seen in this figure, although the

forward elimination tree is not as short and wide as in the case of regular nested dissection
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ordering, the backward tree is definitely more conducive for good performance of parallel
factorization than in the previous case. Essentially we have succeeded in balancing the
degree of parallelism in both forward and backward directions so that lack of parallelism in
any one direction does not act as a bottleneck to the entire BSCF algorithm.

In the next section we look at the bidirectional symbolic factorization algorithm which

allocates memory and sets up the appropriate data structures prior to the BSCF algorithm.

5 The Bidirectional Symbolic Factorization Algorithm

The principal aim of the symbolic factorization phase is to determine apriori, the data
structure of the factor matrices that result from the numerical factorization phase. As seen
in section 2, the BSCF algorithm creates a series of trapezoidal factor matrices of multipliers.
Hence, the bidirectional symbolic factorization algorithm, which precedes the BSCF phase,

does the following.

e It determines the structure of each trapezoidal factor matrix at each of the log N stages

and

e It initializes the data structures for the sets Fi(s) and Bz-(s) which are required during
the BSCF algorithm.

We define Colstruct(Agp,i) to denote the set of row indices of nonzeros in the sub-

diagonal part of column ¢ in the forward matrix A,.
Colstruct(Agg,i) = {j | j > i and Ay[j, 7] # 0}.

In a similar fashion, we define Colstruct'(Az1,%) to denote the set of row indices of nonzeros

in the super-diagonal part of column 7 of the backward matrix A,;.
Colstruct' (Az1,1) = {j | j < i and Ag[j,i] # 0}.

We now describe the bidirectional symbolic factorization algorithm.
Algorithm 3 (*The bidirectional symbolic factorization algorithm*)
begin
for s :=1 to log N do
for col :=1to N do
P - 65
for s :=1 to log N do
for col :=1to N do
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Forward_SF(col,s);
for col := N downto 1 do
Backward_SF(col,s);
end

procedure Forward_SF(col,s)
begin
Let A,y be the forward sub-matrix that contains column col at stage s;
if col belongs to the first half of A,q then
Calculate fparent(col, Ayy) using definition given in section 3.2.2;
if fparent(col, Ay) belongs to the first half of A,y then
Colstruct(Ago, fparent(col, Ay)) =
Colstruct(Ag, fparent(col, Ay) U Colstruct(Ayz, col);
for all j such that j belongs to second half of A,y and Ag[col, j] # 0 do
Colstruct(Ag, j) = Colstruct(Ag, j) U Colstruct(Ayo, col);
for all j such that j € Colstruct(Ayo, col) do
Fj(s) = Fj(s) U {col};
else
Colstruct(Aggp, col) := Colstruct(Ago, col);
for all j € Colstruct(Ag, col) do
Colstruct' (Azor,7) := Colstruct' (Ago1,j) U {col};
end

procedure Backward_SF(col,s)
begin
Let A;; be the backward sub-matrix that contains column col at stage s;
if col belongs to the second half of A,; then
Calculate bparent(col, Az1) using definition given in section 3.2.2;
if bparent(col, Ay1) belongs to the second half of A, then
Colstruct' (Ag1, fparent(col, Az)) :=
Colstruct' (Az1, fparent(col, Az ) U Colstruct' (A1, col);
for all j such that j belongs to first half of A;; and Ay [col, j] # 0 do
Colstruct'(Az1, 7) := Colstruct'(Az1, ) U Colstruct' (Az1, col);
for all j such that j € Colstruct' (A, col) do
Bj(-s) = BJ(-S) U {col};
else
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for all j € Colstruct'(Az1, col) do
Colstruct(Azio, j) := Colstruct(Agzo, j) U {col};
Colstruct' (Az11, col) := Colstruct' (Ag1, col);
end

The bidirectional symbolic factorization algorithm described above has time complexity
proportional to the number of nonzero elements stored in trapezoids at each stage. Since the
symbolic factorization algorithm is executed only once while solving for multiple b-vectors
and also since this phase takes significantly lower time than the numerical factorization phase,
parallelizing this phase does not yield significant improvements in the overall performance.

For the case of regular symbolic factorization, parallel algorithms have been described in
[8, 10, 13]. While the former scheme by George et.al. requires the information about the
elimination tree structure apriori, the latter scheme by Kumar et.al. does not require this
information and uses the concept of false elimination trees (fet) to compute the symbolic
factorization. More specifically, the computation begins with the leaves of the false elimina-
tion tree which pass their column structure information to their true parents. Each internal
node then combines the column structures of all its children with its own column structure,
computes the true parent and sends its column structure information to its true parent. This
process continues till all the information propagates to the root node.

We have developed a parallel bidirectional symbolic factorization algorithm based on a

similar concept of forward and backward false elimination trees.

e ffparent(i,s) denotes the false forward parent of a column ¢ in the sub-matrix A

being factorized in the forward direction at stage s.

ffparent(i,s) = min{j | j € first half of A,y and j € Colstruct(Az,1)}.

e fbparent(i,s) denotes the false backward parent of a column ¢ in the sub-matrix A,
being factorized in the backward direction at stage s.

fbparent(i,s) = max {j | 7 € second half of A, and j € Colstruct' (Az1,1)} -

The details of this algorithm are described below.
Algorithm 4 (*The parallel bidirectional symbolic factorization*)
begin
for s := 1 to log N do
parbegin
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end.

Forward_SF(List,yiq,s);
Backward_SF(List,yiq,5);
parend

procedure Forward_SF(List,s)

begin

for each 7 € List do

Let A, be the forward sub-matrix to which column ¢ belongs at stage s;
dummy_parent := last node of sub-matrix A,g;
Determine the false forward parent f fparent(i, s);
send f fparent(i, s) to processor containing dummy_parent;
if 1 = dummy_parent then
receive f fparent(j, s) from each column j;
broadcast forward fet T, constructed from received
f fparent information;
recetve forward fet Ty broadcast from dummy_parent;
Let the children of column 7 in Ty be CHLD(i);
(*initialise the expected and accumulated weights for node 7*)
expwt(i) :=| CHLD(3) |; accowt(i) := 0;
first(i):=true;
if column 7 is a true leaf of Ty and column 4 is in
first half of sub-matrix A,y then
send Colstruct(Ago, 1) to ffparent(i,s) with weight 1;
send Colstruct(Ag, i) with weight 0 to all nodes j in second half of
Ay such that j € Colstruct(Ag, 1) ;

repeat

receive a message S intended for column i;
Let the message be from processor storing column j with weight w;
if column 7 is in first half of sub-matrix A,y then
case type of S
attach or ordinary:
Colstruct(Ag, i) == Colstruct(Ago, 1) U Colstruct(Az, j);
acc_wt 1= acc_wt + w;
if j € CHLD(i) then delete j from CHLD(i);
if (|CHLD(i) =0 |) and (accwt(i) > exp_wt(i)) then
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ffparent(i,s) := k where k = min(Colstruct(Ago,1));
if f fparent(i) has changed then

send a detach message to old parent;
if first(i) then

wt = acc_wt(i) — exp_wt(i) + 1;

exp-wt (i) := 0;

first(i) :=false;
else

wt = w;

send Colstruct(Ago, i) to ffparent(i) with weight wt;
send Colstruct(Ago, 1) to all nodes j in second half of A
such that j € Colstruct(Azp, i) with weight 0;
detach :
delete j from CHLDi);
else
case type of S
attach or ordinary:
if j € Colstruct(Ay,i) then
Colstruct(Ag, 1) := Colstruct(Ag, i) U Colstruct(Ago, j);
detach:
if 1 = dummy_parent then
delete j from CHLD(i);
if | CHLD(i) =0) then
broadcast forward phase over message;
until S is forward phase over message;
for each 7 € List do
if column 7 is in second half of sub-matrix then
Colstruct(Agp, i) = Colstruct(Ago,1);
for all j such that Ay[j,4] # 0 do
Colstruct' (Azor, J) := Colstruct(Aze,7) U i;
end

procedure Backward_SF(List,s)
begin
for each i € List do
Let A, be the backward sub-matrix to which column ¢ belongs at stage s;
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dummy_parent := last node of sub-matrix A,;
Determine the false backward parent fbparent(i, s);
send fbparent(i, s) to processor containing dummy_parent;
if 1 = dummy_parent then
receive fbparent(j, s) from each column j;
broadcast backward fet Ty, constructed from received
fbparent information;
recetve backward fet Ty, broadcast from dummy_parent;
Let the children of column 7 in T, be CHLD(3);
expwt(z) :=| CHLD(3) |; accowt(i) := 0;
first(i):=true;
if column 7 is a true leaf of T, and column 7 is in second half
of sub-matrix A;; then
send Colstruct'(Ag1,1) to fbparent(i,s) with weight 1;
send Colstruct'(Ag1,1) with weight 0 to all nodes j in first half
of sub-matrix A,; such that j € Colstruct'(Az1,1) ;
repeat
receive a message S intended for column i;
Let the message be from processor storing column j with weight w;
if column 7 is in second half of sub-matrix A,; then
case type of S
attach or ordinary:
Colstruct'(Az1,1) := Colstruct'(Az1,1) U Colstruct' (Az1, );
acc_wt := acc_wt + w;
if j € CHLD(i) then delete j from CHLD(i);
if (| CHLD(i) =0 |) and (accawt(i) > exp-wt(i)) then
foparent(i, s) :== k where k = max(Colstruct' (Ag,1));
if fbparent(i) has changed then
send a detach message to old parent;
if first(i) then
wt == acc_wt(i) — exp_wt(i) + 1;

exp-wt (i) := 0;

first(i) :=false;
else

wt = w;

send Colstruct' (Az, 1) to foparent(i) with weight wt;
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send Colstruct' (A1, 1) to all nodes j in first half of sub-matrix
such that j € Colstruct'(Az1,1) with weight 0;
detach :
delete j from CHLD(i);
else
case type of S
attach or ordinary:
if j € Colstruct'(Az1,1) then
Colstruct'(Az1,1) := Colstruct'(Ag1,1) U Colstruct' (Az1, j);
detach:
if + = dummy_parent then
delete j from CHLD(i);
if | CHLD(i) =0) then
broadcast backward phase over message;
until S is backward phase over message;

for each 7 € List do
if column 7 is in first half of sub-matrix then
for all j such that A, [j,4] # 0 do
Colstruct(Agio, j) := Colstruct' (Azio,7) U i;
Colstruct' (Az11,1) := Colstruct'(Az1,1);
end

6 Experimental Results and Performance Analysis

To evaluate the performance of the entire bidirectional scheme presented in this paper,
we implemented a hypercube simulator in C language and compared the speedups obtained
from the bidirectional scheme with those obtained from the regular scheme. We used SPARC

Classic machines to carry out our simulations.
In the bidirectional scheme, we implemented each of the four phases as follows.

e Ordering : The bidirectional nested dissection ordering described in section 4.

e Symbolic factorization : The sequential bidirectional symbolic factorization algorithm

described in section 5.

o Numerical factorization : The parallel BSCF algorithm described in section 2.
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e Substitution :The parallel BS algorithm described in section 3.
In the regular scheme, we implemented each of the four phases as follows.
e Ordering : The regular nested dissection algorithm for ordering a k x k grid [4].

e Symbolic factorization : The sequential symbolic factorization algorithm presented in
[8].

e Numerical factorization : The parallel fan-in algorithm given in [1].

o Substitution :The elimination tree based forward and back substitution algorithms

given in [14].

Mapping of columns onto processors is an important issue. For the bidirectional scheme,
we have used the block wrap around mapping using gray code [23] whereas for the regular
algorithm we have used the subtree-to-processor mapping [9] based on elimination tree.

The parameters that were varied were the grid size k(16 and 32), the number of processors
p(1 to 1024), the number of b-vectors for which solution vector x was obtained, and the C/FE
ratio i.e., the ratio of time for communicating a floating point data between two neighbouring
processors to the time for a floating point operation(50 and 100). Figures 11, 12, 13, and 14
show the comparison of the measured speedups of the two schemes for various values of the
above parameters.

As mentioned earlier in section 1, the first three phases, namely ordering, symbolic fac-
torization, and numerical factorization, are executed only once and the substitution phase
is repeatedly executed for each one of the different b-vectors.The output of the factorization
phase of the bidirectional algorithm is a series of trapezoidal factor matrices whereas the
output of the regular factorization algorithm is a pair of lower and upper triangular factor
matrices. As a result, the inputs to the substitution phase of bidirectional and regular al-
gorithms also differ. For separate comparison of the two phases of bidirectional and regular
algorithms, we have considered a pseudo-speedup ratio for the bidirectional algorithm. This
is a ratio of the time taken by the best sequential regular algorithm for the factorization (sub-
stitution) phase to the time taken by the parallel bidirectional algorithm for the factorization
(substitution) phase.

Therefore figures 11(a), 12(a), 13(a), and 14(a) compare the pseudo-speedup of the bidi-
rectional algorithm with the speedup of the regular algorithm for the first three phases put
together. The figures 11(b), 12(b), 13(b), and 14(b) compare the pseudo-speedup of the
bidirectional algorithm with the speedup of the regular algorithm for the substitution phase
alone. Figures 11(c), 12(c), 13(c), and 14(c) plot the actual speedups of bidirectional and
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regular algorithms for all the four phases put together versus the number of b-vectors for
which substitution phase is repeatedly executed. In figure 11(c), this comparison has been
shown for the case when p = 8 and £k = 16 (or N = 256) since, for k¥ = 16, bidirectional
factorization phase gives maximum speedup at p = 8. Similarly, in figure 12(c) p = 8 and
k = 16, in figure 13(c) p = 32 and £ = 32, and in figure 14(c) p = 16 and £ = 32 (or
N = 1024). These figures clearly indicate that with increasing number of b-vectors, the
speedup obtained from our bidirectional scheme becomes higher than that obtained from
the regular scheme. On increasing the problem size from k£ = 16 to 32, we observe that the
magnitude of speedup obtained also increases. Increasing the C/FE ratio causes a decrease

in the magnitude of speedup obtained.

7 Conclusions

In this paper, we have proposed a new bidirectional algorithm for direct solution of sparse
symmetric system of linear equations. This scheme generates a series of trapezoidal factor
matrices during the factorization phase due to which the substitution phase has only one
forward substitution component and, unlike the regular substitution algorithms, it does not
possess a back substitution component. Thus the bidirectional algorithm is well suited for
situations where the system of equations has to be solved for multiple b-vectors. We have
demonstrated the effectiveness of the bidirectional algorithm by comparing it with the regular
methods for solving sparse symmetric systems.

In Part II of this paper, we present the bidirectional algorithm for solution of general
sparse linear systems. We describe the important differences with the symmetric coefficient
matrix case, that arise in the ordering technique, the symbolic factorization phase, and
message passing during numerical factorization phase.

Further work is possible in the direction of increasing the amount of parallelism in the
factorization and substitution phases of the bidirectional algorithm. In this work, we have
considered a situation where computations on a particular column, say %, for both forward
and backward factorizations are handled by the same processor. However, the computations
for forward and backward factorizations are independent of each other (i.e., concurrent)
at every stage s. Same is the case with the computations on a column ¢ in substitution
phase. This concurrency has not been sufficiently exploited in the present work. In place
of using p processors, we can use 2p processors, such that two processors are responsible for
computations on each column - one handling computations related to forward factorization
and the other related to backward factorization. Developing such a scheme is an open
problem.
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