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Abstract— Mobility models, or the movement patterns of
nodes communicating wirelessly, play a vital role in the
simulation-based evaluation of Vehicular Ad Hoc Networks
(VANETs). Although recent research has developed models that
better correspond to real world mobility, we still have a limited
understanding of the level of the required level of mobility
details for modeling and simulating VANETs. In this work,
we examine a set of step-by-step enhancements to the level
of details in mobility models for VANETs and evaluate the
sensitivity of simulation results toward those modeling details.
Through this process, we develop several new mobility models,
that account for vehicular movement constraints such as traffic
lights, multilane roads, and acceleration/deceleration. Using real
and controlled synthetic maps, we compare our mobility models
and two prior models. Our results demonstrate that the delivery
ratio and packet delays in VANETs are more sensitive to
the clustering effect of vehicles waiting at intersections and
acceleration/deceleration of vehicles. We also found that the
simulation of multiple lanes and synchronization at traffic
signals have only a marginal impact on the ad hoc routing
performance. Our work provides a sound starting point for
further understanding and development of more realistic and
accurate mobility models for VANET simulations.

I. INTRODUCTION

Vehicular Ad Hoc Networks (VANETs) are a special case
of Mobile Ad Hoc Networks (MANETs) and consist of a
number of vehicles traveling on urban streets, capable of
communicating with each other without a fixed infrastruc-
ture. VANETs are expected to benefit safety applications,
gathering and disseminating real-time traffic congestion and
routing information, sharing of wireless channels for mobile
applications etc. One key component of VANET simulations
is the movement pattern of vehicles, also called the mobility
model. Mobility models determine the location of nodes in
the topology at any given instant, which strongly affects
network connectivity and throughput. The current mobility
models used in popular wireless simulators such as NS-2 [2]
tend to ignore real-world constraints such as street layouts
and traffic signs. Consequently, the simulation results are
unlikely to reflect the protocol performance in the real world.

For example, the widely used Random-Waypoint Model
(RWM) [15] assumes that nodes move in an open field
without obstructions. In contrast, the layout of roads, in-
tersections with traffic signals, buildings, and other obsta-
cles in urban settings constrain vehicular movement. In
response to the limitations of RWM, more researchers have
become interested in modeling ’realistic’ mobility patterns for
VANETs [11], [18], [23], [19], [9], [14], [12], [21]. Although
these studies capture different levels of simulation details
and realism, existing research has shed little light on the
level of details required and the sensitivity of those details in
simulation results of VANETs. Excessive details only prolong

the running time of a simulation, while too few details will
lead to inaccurate simulation results.

This paper addresses the following question: what is
the sensitivity of VANET simulation results toward individ-
ual mobility characteristics? We identify constraints that
significantly impact the performance of routing protocols
in VANETs. As a complementary result, we also identify
constraints that only marginally affect the routing protocol
performance and could potentially be ignored. Our specific
contributions are as follows:

• We introduce several new models that capture vehicular
mobility at various levels of detail – the Stop Sign Model
(SSM), the Probabilistic Traffic Sign Model (PTSM),
and the Traffic Light Model (TLM). The focus of this
paper is not to advocate one model over the other, but to
use them to gain better insights into mobility models.

• We compared our mobility models with two prior
models - the Random-Waypoint Model [15] and the
Rice University Model (RUM) [18]. These models are
evaluated over various parameters such as topology (real
maps and controlled grids), vehicular speed, and the wait
times at intersections.

• We show that one factor that significantly affects the per-
formance of VANETs is the clustering effect of vehicles
at intersections. Increasing either the wait times at the
intersections or the number of nodes lead to increased
clustering. Consequently, increased clustering leads to
higher delivery ratios when neighboring intersections
are within the transmission range and to lower delivery
ratios when neighboring intersections are beyond the
transmission range.

• We evaluate the roles of other factors that signifi-
cantly impact VANET performance, including the topol-
ogy (block sizes and road layouts) and acceleration-
deceleration of vehicles

• We showed that for typical VANET experimental set-
tings, adding complexity to the models, such as by sim-
ulation of multiple lanes and synchronization of traffic
lights, yields limited impact on VANET performance.

II. URBAN VEHICULAR MOBILITY MODELING

In this section we describe several new mobility models.
Each successive model captures vehicular movement char-
acteristics in increasing levels of detail. These models are
based on real street maps extracted from the US censor
bureau TIGER database [4]. The database also provides
information about the road type and implicit information
on speed limit and number of lanes (inter state highways,
residential areas, etc). All roads are modeled as bidirectional
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roads. The SSM and PTSM assume a single lane in each
direction of every road, whereas TLM provides the option
for modeling multiple lanes.

A. Factors Affecting Mobility in VANETs

The mobility pattern of nodes in a VANET influences the
route discovery, maintenance, reconstruction, consistency and
caching mechanisms. Static or slow-moving nodes tend to
dampen the changes in topology and routing by acting as
stable relaying points for packets to/from the neighboring
nodes. On the other hand, highly mobile nodes add entropy to
the system and cause frequent route churn and packet losses.

Street Layouts: Streets force nodes to confine their move-
ments to well-defined paths. This constrained movement
pattern determines the spatial distribution of nodes and their
connectivity. Streets can have either single or multiple lanes
and can allow either one-way or two-way traffic.

Block size: A city block can be considered the smallest
area surrounded by streets. The block size determines the
number of intersections in the area, which in turn determines
the frequency with which a vehicle stops. It also determines
whether nodes at neighboring intersections can hear each
other’s radio transmission. Larger block sizes make the net-
work more sensitive to clustering and degrade performance.

Traffic control mechanisms: The most common traffic
control mechanisms at intersections are stop signs and traffic
lights. These mechanisms result in the formation of clusters
and queues of vehicles at intersections and subsequent reduc-
tion of their average speed of movement. Reduced mobility
implies more static nodes and slower rates of route changes
in the network. On the other hand, cluster formation can also
adversely affect network performance with increased wireless
channel contention and longer network partitions.

Interdependent vehicular motion: Movement of every ve-
hicle is influenced by the movement pattern of its surrounding
vehicles. For example, a vehicle would try to maintain a
minimum distance from the one in front of it, increase or
decrease its speed, and may change to another lane.

Average speed: The speed of the vehicle determines how
quickly its position changes, which in turn determines the rate
of network topology change. The speed limit of each road
also directly affects the average speed of vehicles and how
often the existing routes are broken or new routes are estab-
lished. Additionally, acceleration/deceleration of vehicles and
the topology of the map also directly affect the average speed
of vehicles – if a map has fewer intersections, the vehicles
are able to accelerate to higher speeds when compared to
maps with many intersections and smaller block sizes.

B. Stop Sign Model (SSM)

In the Stop Sign Model (SSM), every street at an in-
tersection has a stop sign. Any vehicle approaching the
intersection must stop at the signal for a specified time
(which is configurable). We used a default value of 3 seconds
in our experiments. On the road, each vehicle’s motion is
constrained by the vehicle in front of it. That is – a vehicle

moving on a road cannot move further than the vehicle
that is moving in front of it, unless it is a multi-lane road
and the vehicles are allowed to overtake each other. When
vehicles follow each other to a stop sign, they form a per-
street queue at the intersection. Each vehicle waits for at
least the required wait time once it gets to the head of the
intersection after other vehicles ahead in the queue clear up.
Vehicle crossings at the intersection is not coordinated among
different directions. Although an urban layout is unlikely to
have stop signs at every intersection, this model does serve as
a simple first step to understanding the dynamics of mobility
and its effect on routing performance.

C. Probabilistic Traffic Sign Model (PTSM)

Next, we refined SSM further by replacing stop signs with
traffic signals at intersections. In general, vehicles stop at
red signals and drive through green signals. Although it is
possible to simulate the detailed coordination of traffic lights
from various directions, we did not implement it at this stage.
We first wanted to understand whether such levels of detail
would produce any significant impact on routing protocol
performance.

As an intermediate step, we developed the Probabilistic
Traffic Sign Model (PTSM). PTSM approximates the oper-
ation of traffic signs by not coordinating among different
directions. When a node reaches an intersection with an
empty queue, it stops at the signal with a probability p and
crosses the signal with a probability (1− p). If it decides to
wait, the amount of wait time is randomly chosen between
0 and w seconds. Any node that arrives later at a non-empty
queue will have to wait for the remaining wait time of the
previous node plus one second. The additional one second
simulates the startup delay between queued cars. Whenever
the signal turns green, the vehicles begin to cross the signal
at intervals of one second, until the queue becomes empty.
The next vehicle that arrives at the head of an empty queue
again makes a decision on whether to stop with a probability
p and so on. Similar to SSM, there is no coordination among
vehicles crossing an intersection from different directions.
This model avoids excessive stoppings, as in the case of
SSM, and at the same time, approximates the behavior of
traffic lights.

D. Traffic Light Model (TLM)

SSM and PTSM are highly approximate models of the be-
havior of vehicular traffic. In order to understand which other
level of detail besides street topology is absolutely essential,
we refined PTSM described earlier with successively greater
levels of mobility details. We call this new model, the Traffic
Light model (TLM).

Coordinated traffic lights:: Under TLM, traffic lights
at each intersection are coordinated. First, consider an in-
tersection with an even number of roads with single-lane
opposing traffic. The lights turn green in such a manner that
only traffic along a single pair of opposing sides cross the
intersection simultaneously. Vehicles that need to turn left
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or right follow the free turn rule once they reach the head
of the queue. While the traffic across one pair of opposing
roads has the green signal, the remaining have red signal.
After a fixed period, green signals are rotated to another pair
of roads with opposing traffic. The case of an odd number of
roads meeting at an intersection (such as a T intersection) is
treated by permitting one of the roads to periodically have a
green light by itself. This feature provides more coordinated
traffic behavior compared to PTSM.

Acceleration and Deceleration:: The next level of
detail we added to TLM was the acceleration and deceleration
of vehicles. In this feature, vehicles at rest do not change their
state to peak speeds instantaneously. Instead, they accelerate
gradually from rest up to the maximum possible speed.
Similarly, when approaching a stop sign or red light, they
decelerate gradually to a stop.

Multiple Lanes:: Another feature of the TLM is the
introduction of multiple lanes. For real maps, the number of
lanes can be determined by the type of the road specified in
the TIGER database. When a vehicle enters a new road, such
as when crossing or turning at an intersection, it selects that
lane in the new road which has the least number of vehicles
(both moving and stopped).

Generating Variants of TLM:: The primary goal of
our study is understand the sensitivity of mobility details
on VANET performance, and to determine the details that
are worth being included in a mobility model. For this
purpose, various features in the TLM can be independently
enabled or disabled to obtain different variants of TLM.
In particular, four variants of TLM can be obtained by
enabling or disabling the acceleration/deceleration and multi-
lane features. Hence, the basic TLM without either of the
two features has one additional feature over PTSM, namely
coordinated traffic lights.

E. Implementation of Mobility Models

We implemented these mobility models in C++ as indepen-
dent programs that generated mobility files. These mobility
files serve as input to the wireless simulations in NS2. The
initial vehicle positions and their destinations are chosen
randomly. Each node follows the shortest path through the
roads to its destinations. Upon reaching a destination, the
node begins its journey to another random destination along
the shortest path computed using the Dijkstra’s algorithm.

Each model takes a time parameter (in seconds). For SSM,
the time parameter denotes the duration each vehicle to
stop at intersections. For PTSM, this parameter denotes the
maximum duration for each vehicle to stop at at the head
of empty intersections. For TLM, this parameter represents
the duration of green lights for each opposing pair of roads
at an intersection. The street topology is specified in a file
that stores the road identifiers and the starting and ending
road coordinates. In SSM and PTSM, vehicles always travel
within 5 miles/hour of the street speed limit. TLM has a
slightly different mechanism with vehicles accelerating from
rest to reach the speed limit, and then decelerating to stops.
The acceleration and deceleration rates were 3 meter/second2.

Parameter Default Value(s)
Simulation Time 900s (plus 450s warmup)
Routing Protocol AODV

NS2 Version ns 2.28
Transmission Range 250m

Number of Nodes 100
CBR Sources 15 sources and sinks

at 4 pkts/sec and 64 byte pkt
Mobility Models RWM, RUM, SSM, PTSM, TLM

Topologies 1200 × 1200m Grid, Real Map
Max. Wait Time SSM–3 sec

PTSM–30 sec (p = 0.5)
TLM – 30 sec

Max. Node Speed 35 mph
Accel./Decel. Rate 3 meters/sec2 for TLM

Performance Metrics Delivery Ratio
End to End delay
Mobility, Clustering

TABLE I
NS2 WIRELESS SIMULATION PARAMETERS

III. PERFORMANCE EVALUATIONS

We used the NS-2 network simulator [2] to evaluate
various mobility details on the AODV ad hoc routing proto-
col. Table I summarizes the default values of the various
simulation parameters. We compared SSM, PTSM, TLM,
the Random Waypoint Model (RWM) [15] and the Rice
University Model (RUM) [18]. RWM captures mobility in an
open field with no obstacles, roads, or intersections. RUM
simulates roads in a real map, but vehicles do not stop
at intersections. For controlled experiments, we varied the
block sizes in a grid topology over a 1200m × 1200m
area. We also used several real world street maps extracted
from the US Census Bureau TIGER [4] database. Although
real world maps are useful in understanding the combined
effects of various modeling details, we also used a controlled
grid topology to study isolated effects of block sizes. Each
experiment lasted 900 seconds, with an additional 450-second
warm-up period. Experiments were repeated with at least five
separate mobility patterns to attain a 95% confidence interval.

A. Varying Number of Nodes

This section compares various mobility models with dif-
ferent numbers of nodes in a a 1200m×1200m grid topology
with a block size of 200m× 50m. Figures 1 and 2 compare
the delivery ratio and end-to-end delay among all mobility
models. SSM had a wait time of 3 seconds. PTSM had a
maximum wait time of 30 seconds. TLM switched signals
with a periodicity of 30 seconds and used two lanes in each
direction with acceleration/deceleration of vehicles enabled.

The results indicated that the RWM yields the lowest de-
livery ratio and the maximum end-to-end delay, for this par-
ticular topology. The range of performance variation across
various models highlights our point regarding the importance
of fidelity of mobility models in VANET simulations.

The common trend is that the delivery ratio increases with
the number of nodes, up to 100 nodes, as the connectivity of
the communication graph increases. Then the delivery ratio
starts decreasing as the number of nodes increases further.
This behavior is due to the increased channel contention
as the large number of nodes leads to a flood of control
messages in the network. The end-to-end delay in Figure 2
displays the opposite trend: it first decreases as the number of
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Fig. 1. Delivery ratio vs. number of simu-
lated nodes.
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Fig. 2. End-to-end delay vs. number of
simulated nodes.
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Fig. 3. Delivery ratio vs. number of sim-
ulated nodes for different versions of the
traffic light model.

nodes increases, and then there is a sharp increase thereafter.
We also experienced certain NS2 constraints as the number
of nodes increased. The simulation time became a concern
because we needed to explore a large parameter space. Also,
the resource requirements of memory and storage (for output
traces) became prohibitive. Additionally, with a large number
of nodes, the confidence intervals of performance numbers
widen significantly, further requiring more repetitions to
reduce the variance of the results. Unless specified, we used
100 nodes for simulations in the remaining evaluations.

To understand the sensitivity of various mobility features
(e.g. multilane roads and acceleration/deceleration of ve-
hicles), we repeated the same experiment on TLM, with
combinations of features enabled/disabled (Figures 3 and
4) compare the performance of the resulting four variants.
The results indicate that acceleration/deceleration led to a
significant increase in the delivery ratio because this feature
reduces the average speed of vehicles. Thus, network routes
are more stable. Additionally, the performance difference be-
tween the single-lane and multilane models is not noticeable
below 100 nodes. However, with acceleration/deceleration
disabled, it becomes noticeable beyond 100 nodes as the
channel contention begins to rise. It is interesting to note that,
once the acceleration/deceleration is enabled, the difference
between the single-lane and multi-lane models becomes
negligible. At first glance, multiple lanes without acceleration
and deceleration differ from single lanes without acceleration
and deceleration. However, the confidence interval is rather
wide. After checking the average vehicle speed (Figure 15),
and the average percentage of nodes moving at a given time
(Figure 10), the two models appear to have the same clus-
tering effects at intersections with cars moving at a similar
average speed. Therefore, we believe that the difference is
largely within margins of statistical errors. Thus, with our
experimental settings of having fewer than 200 nodes in a
1200m x 1200m area (which is very typical), the additional
complexity of modeling multiple lanes will not significantly
affect the performance of VANETs.

B. Varying Number of CBR Sources

This section presents the delivery ratio and packet delay
with varying Constant Bit Rate (CBR) sources. We used a
1200m× 1200m grid topology with a block size of 200m×
50m. The number of nodes was fixed at 100. Figures 5 and
6 show that when the number of sources increases beyond

15, there is an increase in the end-to-end delay by an order
of magnitude and a significant drop in the delivery ratio. The
deviation in results is also quite large beyond 15 sources, as
indicated by the confidence intervals. When the number of
CBR sources increases, there is an increase in the number of
packets contending for a common wireless channel, which
leads to more collisions and packet drops. In the remaining
experiments, we use 15 CBR sources among 100 nodes.

C. Varying Vehicle Speeds

We varied the maximum speed limit of vehicles and ana-
lyzed the performance for various mobility models (Figure 7).
Note that the maximum speed is based on the type of road,
as defined by the Census Bureau. For example, a type x road
has a speed of 25 mph, whereas a type y road has a speed of
35 mph. We varied the speed from its default value to study
how this parameter affects the resulting mobility pattern. The
results show that under realistic settings (e.g. maximum speed
limits ≤ 45 mph) different mobility models are within 5

D. Varying Maximum Wait Times at Intersections

To further understand the effect of vehicles stopping at
intersections, we varied the maximum wait time of nodes
at intersections (Figure 8). The delivery ratio results brought
out an interesting aspect of this study. As expected, the RUM
model yields the lowest delivery ratio due to its highly dy-
namic pattern of mobility. However, in contrast to our earlier
experiments, SSM yields a higher delivery ratio compared
to PTSM. The reason is that SSM results in a more static
network than PTSM does, where nodes are forced to stop at
all intersections. On the other hand, PTSM nodes at inter-
sections decide with a 50no acceleration/deceleration TLM
displays a marginally lower delivery ratio than PTSM for the
same wait time because coordinated traffic lights provide a
slightly higher rate of churn compared to PTSM.. However,
the addition of multiple lanes and acceleration/deceleration
to TLM yields the highest delivery ratio among these models.
This result, combined with our earlier observation about
negligible impact of modeling multiple lanes, suggests that
the introduction of acceleration/deceleration effectively slows
down the vehicle speeds most significantly and dampens the
changes in the network topology. However, these results are
also dependent upon other factors, such as block sizes, which
we will consider next.



5

0 50 100 150 200

Number of Nodes

0

1

2

3

E
nd

 to
 E

nd
 d

el
ay

 (
Se

c)

TLM 1 (Single Lane/No Accn) 
TLM 2 (Single Lane/Accn)
TLM 3 (Multi Lane/No Accn)
TLM 4 (Multi Lane/Accn)

Fig. 4. End-to-end delay vs. number of
simulated nodes for different versions of the
traffic light model.
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Fig. 5. Delivery ratio vs. number of CBR
sources.
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Fig. 6. End-to-end delay vs. number of
CBR sources.
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Fig. 7. Delivery ratio vs. maximum speed
of vehicles.
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Fig. 8. Delivery ratio vs. maximum wait
time at intersections.
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Fig. 9. Delivery ratio vs. increase in block
size.

E. Effect of Block Sizes
The block sizes in the topology play an important role in

determining the performance of VANETs. With large block
sizes, vehicles spend more time in traversing between inter-
sections; thus, nodes are mobile more often. This increased
mobility leads to a weakened connectivity in the network, and
a corresponding drop in the delivery ratio. To validate this
hypothesis, we conducted experiments with varying block
sizes in a 1200m× 1200m area. Figure 9 largely confirmed
our hypothesis – as the block size increases, the delivery ratio
decreases. The RUM model is not sensitive to block sizes,
since nodes do not stop at intersections. With the largest
evaluated block, SSM outperforms PTSM due to a lower
churn rate of routes, illustrating the interplay between block
sizes and wait times in VANET simulations.
F. Analysis of Increased Mobility

The results of our experiments showed a distinct trend
between the performance of various mobility models -TLM
resulted in the highest delivery ratios, and the performance
did not degrade considerably with an increase in the number
of simulated nodes; PTSM showed a higher delivery ratio
than SSM, and the throughput obtained through use of these
models was considerably higher than RUM. This brings into
context our hypothesis that varying the degree of mobility
(node speed) within these networks is the reason for differing
performance. In SSM, each node is forced to stop at each
intersection. On the other hand, PTSM nodes stop only at
non-empty intersections and some of the empty intersections.
However, the default wait times for PTSM are higher as
compared to SSM. This leads to a network that is effectively
more static when compared to SSM, with better connectivity
and corresponding performance improvements. TLM elimi-
nates the probabilistic behavior of traffic lights and introduces

acceleration and deceleration of vehicles, which leads to an
even more stable network. To gain a detailed understanding,
we identified metrics that measured the mobility of the nodes
and the clustering of vehicles at intersections. The first metric
provided us with a measure of the fraction of nodes we
expected to actually be mobile at any given instant. The
second metric was the extent of clustering at intersections.
The number of clusters of vehicles could be treated as an
effective number of nodes in the network, since all the nodes
in a cluster displayed similar connectivity to nodes outside
the cluster. The third metric measured the average speed.

1) Average Number of Mobile Nodes: To compute this
metric we determined the number of nodes that are not
waiting in a queue at any intersection. We took samples each
second, averaged the results over the entire simulated time,
and represented the result as the percentage of total nodes.

The first observation is that for the same wait time, varying
the number of nodes does not appear to affect the percentage
of mobile nodes significantly. This implies that the topology
and wait time are more influential to the percentage of
moving nodes compared to the number of nodes, up to
400 nodes within a 1200m × 1200m area. Under similar
conditions of wait time and topology, SSM is less mobile
when compared to PTSM as expected. The introduction of
acceleration/deceleration of vehicles to TLM increases the
percentage of moving nodes in the network significantly, as
slower average speeds reduce the chance of nodes being
queued at intersections. To illustrate the effect of the wait
time, we also evaluated both PTSM and TLM with a similar
value of the wait time. The plots indicate that for the same
wait time of 10 seconds, PTSM is more mobile than SSM,
with PTSM having an average of 85% of the nodes moving
at any time compared to 68% for SSM.
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Fig. 10. Percentage of mobile nodes at a
given time.

0 100 200 300 400

Number of Nodes

0

50

100

150

200

250

300

N
um

be
r 

of
 E

ff
ec

tiv
e 

N
od

es

Stop Sign Model (Wait-3 sec)
Stop Sign Model ( Wait-10 sec)
Prob. Traffic Model (Wait-30 sec)
Prob. Traffic Model (Wait-10 sec)
Traffic Light Model (TLM)
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2) Average Number of Clusters: Stopping of nodes at
intersections effectively creates many clusters all over the
network. Connectivity among the nodes within a cluster is
near perfect (minus the network contention effects). On the
other hand, if one node in the cluster cannot reach a distant
node outside the cluster, then most likely all nodes in the
cluster are unable to reach the same distant node. The number
of such clusters can be treated as the effective number of
(logical) nodes in the VANET at any time. Thus, we postulate
that clustering has an effect similar to decreasing the number
of nodes in the network.

To estimate the number of effective nodes, we divided the
topology into 60m × 60m regions, counted the number of
regions containing at least a node each second, and took the
average. Figure 11 shows that when the number of nodes
increases, the number of effective nodes grows sub-linearly
as more nodes are clustered at intersections. TLM resulted in
a marginally greater number of effective nodes as compared
to PTSM, for a similar wait duration of 30 seconds. This
indicates a reduced clustering effect in TLM – a consequence
of the reduced average speeds of the vehicles. We also
studied the variation of this effect with the maximum wait
time at intersections. With a wait time of 10 seconds, we
observed that SSM with a wait time of 3 seconds resulted
in a similar value as that of PTSM, which is consistent
with our findings in Figure 10. Interestingly, Figure 12
shows that acceleration/deceleration and multiple lanes do
not significantly impact the difference in clustering level
between the various versions of TLM. This indicates that
the performance difference across TLM variants is mainly

due to differences in average speed.
3) Average Speed of Vehicles: We computed the average

speed for each vehicle as the ratio of the entire distance
it travels during the simulation and the simulated time
(Figure 15). We observed that PTSM results in lower average
speeds compared to SSM, because of the longer wait times
involved at intersections. For TLM variants, the addition of
acceleration/deceleration leads to a significant decrease in av-
erage speed, which translates into higher delivery ratios. Also
observe that TLM with multiple lanes does not noticeably
affect the average speed compared to single lane.

G. Real Map Results

Having the insights into the various factors affecting
VANET performance in grid topologies, we conducted exper-
iments using real maps extracted from the TIGER database.
We performed a set of experiments using a smaller section
of the map used by RUM [18]. The original map was
2400m × 2400m, but the NS2 simulations at this size do
not scale due to the large number of nodes required (or
conversely, one needs to set unrealistic transmission ranges)
to maintain meaningful delivery ratios. To address this prob-
lem, RUM [18] used a transmission range of 500 meters,
which we considered to be too large for our settings. Hence,
we decided to maintain the original default NS-2 setting of
250 meters transmission range, with a truncated map size
of 1200m × 1200m. Figure 13 shows the map layout for
this set of experiments. Fig 16 shows that the delivery ratio
for each model increased with the number of nodes up to
100 nodes, followed by a rapid degradation in performance
thereafter. However, the performance using TLM remained
constant up to almost 200 nodes. These results reconfirm
our understanding regarding the correlation between topology
and mobility, and between the mobility and performance of
the simulated VANETs.

For another experiment, we extracted a map of Tallahassee,
over an area of 2000m × 2000m. The results in this case
were different from what we had seen so far, owing to a
much larger area as compared to the first map. Figures 14
and 17 present the actual map and the performance results.
In this experiment, we were able to observe the effect of
network partitioning due to the large area and the initial low
density of nodes. This effect was also strengthened due to the
stoppages enforced by our mobility models – once a node is
in the waiting state at an intersection, it is highly likely to
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Fig. 17. Delivery ratio for map in Fig. 14.

communicate with other nodes in other intersections due to
the large size of the map. The delivery ratios were initially
very low with a small number of nodes, and the performance
actually improved as the number of nodes was increased up
to 200. This was in contrast to the results obtained with
the smaller map, where the performance went down with
an increase in the number of nodes, perceivably due to
network saturation. This reinforces our observation that these
simulation results must be analyzed with the topology in
mind. However, our basic understanding remains valid. The
delivery ratio with TLM still remains higher than that with
PTSM, SSM, and RUM due to a lower network churn

IV. RELATED WORK

A number of mobility models have been proposed for
simulating wireless ad hoc networks in different scenarios,
including VANETs. We summarize the most relevant ones.
To the best of our knowledge, our work is the first systematic
attempt to understand and evaluate various factors that affect
mobility in VANETs and, consequently, impact the routing
performance. In contrast to earlier works, the focus of our
paper is not to recommend any mobility model, but to under-
stand and evaluate the performance impact and significance
of various mobility factors on VANET simulations

The most used mobility model in literature is the Random
WayPoint (RWM) model [15]. Every node selects a random
destination and speed and then moves to that destination
with the chosen speed, pauses, and then moves again to
another random destination. Other similar open-field models
include the Random Walk, Random Direction Model and the
Boundless Simulation Area Model [8]. Camp [8] observed
that the spatial distribution of nodes in such models is
toward the center of the simulation area. The nodes appear
to converge and diverge repeatedly at the center, which leads
to inherent flaws in simulations.

Davies [10] evaluated a number of representative mobility
models for ad hoc networks. The authors concluded that none
of the evaluated models depicted realistic mobility scenarios
and there was a need to implement mobility models ap-
propriate for the scenarios under consideration [23] reached
a similar conclusion after evaluating many other mobility
models. Other works [6], [17] have also attempted to improve
RWM to make it more realistic, though not within the context
of VANETs.

Most of the research mentioned target mobility modeling
in general, but little work has been done toward mobility

modeling specifically for VANETs. Bai [11] argued that the
choice of mobility model can affect the performance of the
MANET routing protocols, and introduced the Freeway and
Manhattan mobility models, which simulate node mobility on
roads specified through maps. The Freeway model attempted
to model movement of vehicles on freeways. A map had
several freeways having multiple lanes. Each vehicle’s move-
ment was restricted to its lane, and the velocity of nodes was
dependent on their recent velocities. The Manhattan model
captured an urban area similar to the grids that we have
used in our experiments. Whenever a vehicle reached an
intersection, it was determined with some fixed probability
whether it would turn left or right, or continue on the same
street. The vehicles were not constrained to pause, stop, or
queue up at intersections.

Saha et al. [18] at Rice University modeled mobility of
vehicles on real street maps, which were obtained from
the TIGER database [4] maintained by the Census Bureau,
by constraining vehicle mobility to street boundaries. Their
model, which we call RUM in this paper, does not enforce
any traffic rules on the network, especially at intersections.
They showed that results obtained from RUM are similar to
those obtained from the RWM. Because RUM is a good start-
ing point toward modeling vehicular mobility, we included
RUM as one of the base cases for performance comparisons.

Choffnes and Bustamante [9] recently introduced a ve-
hicular mobility model for urban environments. With their
simulators configured to generate delivery ratios between
0.05 and 0.3, they observed that the network performance in
such a network was significantly different from the RWM.
The authors also observed that the performance varied with
the type of environment being simulated. Our evaluations
confirmed their findings. Additionally, our evaluations in this
paper used reasonable parameter settings to generate delivery
ratios over 90% that are within the usable range. Because
their mobility model is written using the SWANS simulator,
we found it difficult to evaluate their mobility models without
significant porting effort to NS2.

Work in [19] presents a mobility model that captures
various effects of group mobility over large geographical
areas, the target application being cellular networks. In the
Reference Point Group Mobility model (RPGM) [13] every
node has an individual component as well as a group compo-
nent in the movement vector. Both the mobility components
are based on RWM, the former within the group scope and
latter within the entire arbitrary space. This is significantly
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different from vehicular motion on streets. Another group
mobility model is evaluated in [5] typically for military
scenarios involving movement of nodes in groups.

Random Trip Model [7] integrates several models includ-
ing random way point model, random walk model, and city
section model. For modeling mobility in cities, [14] proposed
several theoretical models like city area, area zone, and unit
street models. However, as pointed out in [10], these models
lack specific details for actual node movement calculations.
They also introduce considerable computational effort and
complexity when used in simulations.

Some works in VANETs focus upon using mobility traces
and/or proprietary software tools. In [12], a multi-tier ad
hoc wireless routing architecture is proposed based on the
collection of realistic mobility traces from city buses in
metropolitan area. However these traces need not necessarily
generalize mobility for all vehicles over varied topologies.
Proprietary traffic simulation tools like Paramics [3] and
CORSIM [1] are also available commercially for model-
ing modern transportation systems. For instance, [21] uses
Paramics to generate node movements. However, apart from
some synchronization overhead involved among traffic sim-
ulation and wireless simulation, use of proprietary software
hinders further research and development. Additionally, most
of these tools hide the topology details from the simulator.

Interest in VANETs and the performance of protocols at
different layers has been increasing off late. For instance,
[16] studies the protocol behavior at the MAC layer and
proposes a new multihop broadcast protocol for realistic
vehicular traffic scenarios. [21] modulates power level and
transmission intervals to minimize packet collisions in inter-
vehicular communication. In [20], the authors propose a
mobility centric algorithm for data dissemination in vehicular
networks. Performance evaluation of safety applications in
VANETs over the dedicated short range communication
(DSRC) standard have been performed in [22]. All of these
optimizations and evaluations depend upon an in-depth un-
derstanding of the factors that impact mobility patterns and
protocol performance in VANETs, which is our focus.

V. CONCLUSIONS

Mobility models play a critical role in accurate simula-
tion of routing protocol performance in Vehicular Ad Hoc
Networks (VANETs). In this paper, we have evaluated the
sensitivity of mobility details on VANETs in an urban con-
text. We proposed three new but related vehicular mobility
models – the Stop Sign Model, the Traffic Sign Model,
and the Traffic Light Model – that capture the movement
pattern of vehicles in urban environments at varying levels
of detail. Our results indicate that the clustering effect of
vehicles waiting at intersections and acceleration/deceleration
of vehicles are significant factors that affect the delivery
ratio and packet delays in VANETs. Additionally, we found
that the simulation of multiple lanes and coordinated traffic
lights has only a marginal impact on the ad hoc routing
performance. Though far from being the final word, our work

provides a sound starting point for further understanding and
development of mobility models for VANETs.
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