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ABSTRACT
Virtual Machine (VM) checkpointing enables a user to capture a
snapshot of a running VM on persistent storage. VM checkpoints
can be used to roll back the VM to a previous “good” state in or-
der to recover from a VM crash or to undo a previous VM activity.
Although VM checkpointing eases systems administration and im-
proves usability, it can also increase the risks of exposing sensitive
information. This is because the checkpoint may store VM’s phys-
ical memory pages that contain confidential information such as
clear text passwords, credit card numbers, patients’ health records,
tax returns, etc.

This paper presents the design and implementation of SPARC,
a security and privacy aware checkpointing mechanism. SPARC
enables users to selectively exclude processes and terminal appli-
cations that contain sensitive data from being checkpointed. Selec-
tive exclusion is performed by the hypervisor by sanitizing memory
pages in the checkpoint file that belong to the excluded applica-
tions. We describe the design challenges in effectively tracking and
excluding process-specific memory contents from the checkpoint
file in a VM running the commodity Linux operating system. Our
preliminary results show that SPARC imposes only 1% − 5.3% of
overhead if most pages are dirty before checkpointing is performed.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms
Security
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1. INTRODUCTION
Virtualization technology is being widely adopted in grid and

cloud computing platforms [42, 46, 31, 38] to improve server con-
solidation and reduce operating costs. On one hand, virtual ma-
chines (VMs) help improve security through greater isolation and
more transparent malware analysis and intrusion detection [30, 32,
37, 14, 15, 19, 22, 39, 35, 24]. On the other hand, virtualization
also gives rise to new challenges in maintaining security and pri-
vacy in virtualized environments. Although significant advances
have been made in developing techniques to secure the execution
of VMs, a number of challenges remain unaddressed. In this paper,
we present techniques to address some of the security and privacy
issues in VM checkpointing.

VM checkpointing saves a persistent snapshot (or a checkpoint)
of the entire memory and disk state of a VM in execution. VM
checkpointing enables a user to recover a long-running process af-
ter the process crashes and to roll back to an earlier “good” state
if the user wishes to undo prior operations or patches on the VM.
Most hypervisors such as VMware [43], Hyper-V [29], Virtual-
Box [33], KVM [1], and Xen [3] support VM checkpointing.

Despite its many benefits, VM checkpointing also has its draw-
backs from security viewpoint. Checkpoints are stored on persis-
tent storage and contain the VM’s physical memory contents at a
given time instant. Hence persistent checkpoints can drastically
prolong the lifetime of memory pages containing sensitive infor-
mation such as clear text passwords, credit card numbers, and other
sensitive information which would normally be quickly discarded
after usage. For example, in our experiments, we studied Virtu-
alBox’s memory checkpoints with a hex editor, and found plain
text credit card numbers in the memory of Firefox web browser
and passwords in the memory of xterm terminal emulator (both
running and terminated). In addition, sensitive information may
also linger in pages of terminated processes because pages were not
deallocated or page data was not cleared after deallocation. Prior
research on minimizing the data lifetime has primarily focused on
clearing the deallocated memory [17, 9]. However, this does not
prevent memory pages from being checkpointed before they are
deallocated. Some other work [20, 2] proposed to protect the
checkpointed information by encrypting the checkpoint files. How-
ever, when the VM is restored, the checkpoint file will be decrypted
and loaded into the memory of the VM, thus making the sensitive
information vulnerable again. Worse still, if an attacker hacks the
user’s account, the attacker will be able to obtain all the information
being checkpointed by simply restoring all checkpoints.

In this paper, we present SPARC, a Security and Privacy Aware



(a)

(b)

Figure 1: VM restored using (a) VirtualBox’s default checkpointing mechanism; and (b) SPARC with Firefox excluded.

Checkpointing mechanism, which enables users to exclude specific
applications that contain users’ confidential information from be-
ing checkpointed by the hypervisor. For example, a user may wish
to exclude a web browser application from being checkpointed be-
cause the user may enter his or her password or credit card number.
Moreover, SPARC enables users to exclude terminal applications
on which applications processing sensitive information are running
from being checkpointed. We have implemented a SPARC proto-
type based on the VirtualBox 3.1.2_OSE hypervisor and Ubuntu
Linux 9.10 guest (kernel v2.6.31). The experimental results show
that SPARC imposes only 1%−5.3% checkpointing overhead with
common application workloads.

Organization.
The rest of the paper is organized as follows. Section 2 and Sec-

tion 3 present techniques for excluding user applications and ter-
minal processes from being checkpointed, respectively. Section 4
presents our experimental results with SPARC. Section 5 gives the
related work and the concluding remarks appear in Section 6.

2. EXCLUDING AN APPLICATION FROM
BEING CHECKPOINTED

SPARC enables users to specify applications they wish to exclude
from being checkpointed. Such applications are typically applica-



Host Service Hypervisor Checkpointer

Host OS Kernel

Custom Syscalls procfs

Guest Service

Guest OS Kernel

Virtual Machine
Host System Guest ProcessGuest Process

Figure 2: The Architecture of SPARC

tions that may process sensitive information (e.g. Firefox, Inter-
net Explorer, Email clients, etc). VirtualBox checkpointing creates
two files: a .sav file which stores the contents of the VM’s phys-
ical memory, and a .vdi file which stores the disk image. For
efficiency, when checkpointing the disk image, instead of cloning
the entire disk, VirtualBox freezes the current disk and creates a
new differencing disk to which all subsequent write operations are
redirected. In this paper, we focus on excluding physical mem-
ory of specific applications from being checkpointed and leave disk
checkpointing issues for future work.

Consider an example where a user has entered a credit card num-
ber into the Firefox web browser. If the user performs checkpoint-
ing after the credit card number is entered, then the credit card num-
ber may be stored in the checkpoint even if Firefox has been termi-
nated or is being used to access other URLs. SPARC would enable
the user to exclude Firefox from being checkpointed by not storing
the data processed by Firefox in the checkpoint file. In addition,
SPARC will not affect the current execution of Firefox since the
corresponding memory pages are not cleared from the RAM of the
executing VM.

Figure 1(a) gives the screenshot of a VM restored using Virtu-
alBox’s default mechanism, in which checkpointing is performed
as soon as the user enters his or her credit card number. Fig-
ure 1(b) gives the screenshot of the VM restored using SPARC in
which Firefox and the information processed by Firefox are ex-
cluded from being checkpointed.

Figure 2 gives the high-level architecture of SPARC. First, the
user selects a list of applications that he or she wishes to exclude
from being checkpointed. Next, a special process called the guest
service in the VM invokes custom system calls1 to identify and col-
lect physical addresses of memory pages that belong to the appli-
cation being excluded, such as process memory, page cache pages,
etc. Checkpointing is initiated from another special process called
the host service located at the host system. The host service sends
a notification to the guest service that checkpointing has been re-
quested. The guest service replies with the collected physical ad-
dresses of memory pages that need to be excluded. The host ser-
vice then relays the addresses to the hypervisor which in turn com-
mences the checkpoint. The checkpointer in the hypervisor uses the
received physical addresses to determine which memory to clear in
the .sav file. To ensure that the VM can be restored success-
fully, excluding a process should not affect other processes that do
not communicate with the excluded process. As a result, memory

1Custom syscalls have been used for ease of prototyping and can
be easily replaced with a more transparent and extensible ioctl in-
terface.

pages that are shared by multiple processes will not be excluded
from being checkpointed.

Excluding process physical memory.
Figure 3 shows the virtual address space layout of a process in

Linux. The program code segment stores the executable code of
the program. The uninitialized and initialized data sections store
uninitialized and initialized static variables, respectively. The heap
contains dynamically allocated memory. The memory mapped files
section contains files mapped into the memory of the process (e.g.
shared libraries). The stack contains information about function
calls in progress e.g. local variables of functions.

Below, we describe how SPARC identifies and collects informa-
tion about memory pages that belong to a process with ID pid
and excludes those pages from the checkpoint file. First, the guest
service invokes a system call that locates the process descriptor (i.e.
struct task_struct) associated with the process, which links
together all information of a process e.g. memory, open files, asso-
ciated terminal, and pending signals. From the process descriptor,
we obtain a memory descriptor (struct mm_struct) which
contains the starting and ending addresses of each segment of pro-
cess virtual memory.

Next, the guest service breaks up the memory of each seg-
ment into its constituent virtual pages and obtains the physical
address of each page. We skip over the segment representing
the executable image because it does not contain sensitive infor-
mation and clearing it may affect other processes that share the
same in-memory executable image. We also skip over the seg-
ments representing memory-mapped files (usually libraries) be-
cause clearing these segments may affect other processes that map
the same files into their memory. The guest service converts the
virtual address of each page into the physical address based on
file /proc/pid/pagemap in the process file system (procfs),
which is a virtual file system that enables access and modification
of kernel parameters from the user space through a file-like inter-
face. For each virtual page, the file contains information about
whether the page is resident in the physical memory and, if so,
provides the physical address of the page. To avoid affecting other
processes in the system, we skip all resident pages which are be-
ing mapped more than once. To determine the number of times a
physical page has been mapped, the guest service checks the file
/proc/kpagecount which records the number of times each
physical page has been mapped.

Finally, the physical address of each page is sent to the host ser-
vice which in turn relays the address to the hypervisor. When Virtu-
alBox creates a memory checkpoint, prior to saving a physical page
to the .sav file, SPARC checks if the physical address of the page
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Figure 3: Process virtual memory layout

matches one of the received addresses. If not, it saves the contents
of the page to the checkpoint file. Otherwise, it saves a page con-
taining all 0’s. To implement this behavior in the VirtualBox, we
have modified the function pgmSavePages(). Because pages
are constantly swapped between the disk and the physical memory,
the virtual-to-physical memory mappings of a process may change
after collecting the physical addresses. This may result in exclud-
ing the wrong memory contents. We overcome this by freezing all
user space processes except the guest service prior to gathering the
physical addresses. This is achieved by using the freezer subsys-
tem [45] of the kernel, designed for selectively freezing user-level
processes for hibernation or resource management purposes. Once
the checkpointing completes, all processes are unfrozen and the ex-
ecution proceeds as normal.

When the VM is restored, the guest service detects the restora-
tion event and sends the SIGKILL signal to each process whose
memory contents were previously excluded during checkpointing.
This SIGKILL signal is required to allow the guest kernel to clean
up any residual state (other than memory) for excluded processes
before the VM resumes. Finally, the guest service unfreezes the
all processes and the execution proceeds as normal. Note that, if
the process being excluded deallocates pages containing sensitive
information prior to the checkpointing, these pages can no longer
be identified and cleared. To solve this problem, we modify kernel
functions to zero out deallocated pages belonging to the process
being excluded prior to deallocation.

Excluding pages of a process in the page cache.
Page cache is used by the kernel to speed up disk operations by

caching disk data in the main memory. Page cache speeds up disk
operations as follows. When data is read from the disk, a page is al-
located in the physical memory and is filled with the corresponding
data from the disk. Thus, all subsequent read operations targeted
at the same disk location can quickly access the data in the main
memory. Subsequent write operations to the disk location simply
modify the page in the page cache. The kernel, after some delay,
synchronizes the page with the disk. Every disk operation in Linux

goes through the page cache (except for the swap device or files
opened with O_DIRECT flag) [4].

If the process performs disk I/O operations, the sensitive infor-
mation read from and written to the disk may reside in the page
cache. For example, we found that when searching for any string
using the Google search engine through Firefox, the string appears
in the kernel’s page cache, possibly because Google caches sug-
gestions for frequent searches on the local disk. Moreover, when a
process terminates, the page cache retains some of the pages of the
terminated process for a period of time in case that the same data
is accessed by another process in the near future. Even when the
page is evicted, the page contents will remain in the free memory
pool until they are overwritten.

SPARC excludes the cached pages of a process in the checkpoints
as follows. First, it retrieves the file descriptor table (struct
file ** fd) from the process descriptor of the process, which
comprises an array of file descriptors belonging to the process.
Next, for each file descriptor that represents an open file, it obtains
information about pages that cache data from the field struct
address_space i_mapping. Finally, it uses the structure to
obtain page descriptors representing pages in the page cache, con-
verts the page descriptors to physical addresses of the pages, trans-
fers the addresses to the host service, and clears them.

Note that when a process closes a file descriptor, the descriptor
is removed from the file descriptor table of the process. As a result,
if the process closes the descriptor prior to the checkpointing, the
above approach will fail to detect the associated pages in the page
cache. To counter this, whenever a file descriptor is closed, we
evict and clear all pages from the page cache associated with the
closed file descriptor. In addition, even after a page is being evicted
from page cache (using remove_from_page_cache()), the
physical memory pages may still retain sensitive data belonging to
the process. Thus, SPARC sanitizes (zeros out) each evicted page
that was originally brought into the cache on behalf of the process
being excluded. Finally, the (cleared) pages in the page cache may
also be used by other processes. To avoid affecting the processes
which rely on these pages, when the VM is restored (but before the
processes are thawed), we flush all pages used by the processes to
be excluded from the page cache.

Excluding pipe buffers.
Pipes and FIFOs are mechanisms commonly used for imple-

menting producer/consumer relationship between two processes.
A pipe enables communication between the parent and the child
processes. A parent process creates a pipe by issuing a pipe()
system call. The system call returns two file descriptors. Any data
written to the first file descriptor (e.g. via the write() system
call) can be read from the second descriptor (e.g. with the read()
system call). Shell programs make use of pipes to connect out-
put of one process to the input of another (e.g. “ls | grep
myfile”). Firefox browser also uses pipes to trace malloc()
memory allocations.

FIFOs are similar to pipes but allow communication of two
unrelated processes. An FIFO is created via mkfifo() sys-
tem call, which takes the name of the FIFO as one of the pa-
rameters. Once created, the FIFO appears like a regular file
on the file system, but behaves like a pipe: the producer pro-
cess opens the FIFO “file” for writing and the consumer pro-
cess for reading. For example, in a terminal, a user can create
a FIFO called myfifo with command mkfifo myfifo. Issu-
ing command echo "Data lifetime is important" >
myfifo will write the string “Data lifetime is important” to the
buffer of myfifo. The subsequent command cat myfifo will



remove the string from the buffer of myfifo and print “Data
lifetime is important” to the terminal. FIFOs are fre-
quently used by the Google Chrome to implement communications
between the renderer process and the browser process [21].

Data exchanged via pipes and FIFOs flows through a pipe buffer
in the kernel. Hence, if the process being excluded makes use of
pipes and/or FIFOs, we must also sanitize the corresponding pipe
buffers. The pipe buffers are sanitized as follows. First, we lo-
cate the file descriptors opened by the process that represent pipes
and FIFOs, in a manner similar to identifying file descriptors repre-
senting regular (i.e. on-disk) files. We then retrieve the associated
pipe buffer descriptors (of type struct pipe_buffer) from
each file descriptor. Finally, we retrieve the descriptors of pages
used to store inter-process data from each pipe buffer descriptor
and convert page descriptors into the physical addresses of pages
they represent.

Excluding socket buffers.
All application-level network communication takes place

through network sockets. With each socket, the kernel associates
a list of socket buffers (struct sk_buffs) which contain data
exchanged over the socket. If a process sends or receives sensi-
tive information via an open socket (e.g. through read() and
write() system calls), the information may be stored in the
sk_buffs of the sockets used by the process. Therefore, when
excluding a process, we also detect all sockets opened by the pro-
cess and sanitize the memory associated with sk_buffs.

Identifying file descriptors of a process that represent sock-
ets is similar to detecting pipes and FIFOs. First, we retrieve
the associated socket descriptor (struct socket) from each
file descriptor that represents a socket. Each socket descrip-
tor contains structure (struct sock) that encapsulates net-
work layer representation of the socket. This structure consists
of the queue of socket buffers that are ready to be sent via
socket (struct sk_buff_head sk_write_queue) and
the queue of socket buffers that have been received via socket
(struct sk_buff_head sk_receive_queue). We then
traverse both queues and determine the physical memory address
where the payload data is stored for each socket buffer.

GUI related issues.
It is common for processes to display sensitive information on

the screen. When a VM is restored, but before the process is ter-
minated, the information displayed by the process may linger on
the screen for a brief moment. To address the problem, at check-
pointing time, we invoke the XCreateWindow() API provided
by X-Windows to visually cover the windows of the processes be-
ing excluded with black rectangles. When the checkpointing com-
pletes, the rectangles are removed and the user continues using the
process. When the VM is restored, the windows remain covered.
We remove the windows briefly after sending the SIGKILL sig-
nals to the processes being excluded and unfreezing the processes.
To detect all windows of a given process, we traverse the list of all
open windows and check the windows’ _NET_WM_PID property -
the process ID of the process owning the window.

SPARC also enables a user to choose the process to exclude
from checkpointing by clicking on the process window. When
the user clicks the window, SPARC automatically checks the
_NET_WM_PID property of the window and the process is then
excluded as previously described.

Note that the buffers belonging to the X-windows, GTK, and
other GUI components may also contain sensitive information of
the process encoded in a different format. Currently we only zero

TTY Driver
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TTY Core
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Hardware

Figure 4: Teletype (TTY) subsystem architecture

out pages in the checkpoints that contain clear text. Zeroing out
pages that contain sensitive information with different format can
use a similar approach and is deferred to future work.

3. EXCLUDING TERMINAL APPLICA-
TIONS

Applications running on terminals may take confidential data as
inputs and output confidential data on the terminal. As a result,
terminals where the excluded applications are running should also
be excluded from being checkpointed.

In Linux, there are two main types of terminals: virtual consoles
and pseudo terminals. A system typically contains 7 virtual con-
soles (named tty1-tty7); the first 6 consoles usually provide
a text terminal interface consisting of the login and shell, and the
7th console usually provides a graphical interface. Pseudo terminal
applications emulate a text terminal within some other graphical
system. A typical pseudo terminal application such as xterm forks
off a shell process (e.g. bash). When the user runs a command
(e.g. ls), the shell forks off a child process and replaces the child’s
executable image with the code of the specified command. In all
terminal types, by default, the child process inherits the terminal of
its parent process. In this paper, we consider two of the most often
used terminals: virtual consoles and terminal emulators.

All terminals rely on the Teletype (TTY) subsystem in the ker-
nel. Figure 4 shows the architecture of the TTY subsystem where
arrows indicate the flow of data. The uppermost layer of the TTY
subsystem is the TTY core, which arbitrates the flow of data be-
tween user space and TTY. The data received by the TTY core is
sent to TTY line discipline drivers, which usually convert data to a
protocol specific format such as PPP or Bluetooth. Finally, the data
is sent to the TTY driver, which converts the data to the hardware
specific format and sends it to the hardware. There are three types
of TTY drivers: console, serial port, and pseudo terminal (pty).
All data received by the TTY driver from the hardware flows back
up to the line disciplines and finally to the TTY core where it can
be retrieved from the user space. Sometimes the TTY core and the
TTY driver communicate directly [11].



Identifying Terminal where a Process is Running.
The kernel associates a TTY structure (tty_struct) with

each process descriptor, which links together all information rele-
vant to the instance of the TTY subsystem associated with the pro-
cess. We can determine the terminal on which a process is running
by examining the name field of the TTY structure. If the process
is running on the virtual console, then the name is “ttyxx” where
“xx” is a number. If the process is running on a pseudo terminal,
then the terminal name is “ptsxx”.

Once we determine the terminal name where the process that
needs to be excluded is running, we identify all other processes
that are running on the same terminal and exclude them from being
checkpointed. We achieve this by traversing all process descriptors
and comparing the name of their terminals to that of the process
being excluded. If the process is running on a pseudo terminal,
we also exclude the pseudo terminal application (e.g. xterm) be-
cause it may contain the input or output information of the pro-
cess. The terminal application is usually not attached to the same
terminal as the process being excluded. However, the terminal
application can be detected by following the pointer in the de-
scriptor of the process running on the terminal (task_struct
* real_parent), which points to the process descriptor of the
parent process, until the descriptor of the terminal application is
reached. The terminal application and all its descendants are then
excluded as described in Section 2.

Excluding TTY Information.
We sanitize the TTY subsystem associated with the con-

sole/pseudo terminal by clearing the buffers used at each level of
the TTY subsystem shown in Figure 4. The TTY subsystem main-
tains the following buffers: TTY core uses specialized buffers (of
type struct tty_buffer) to store information received from
the user space; TTY line discipline drivers use three respective
character buffers to store the data received from the TTY driver
(read_buf), the data received from the TTY core that needs to
be written to the TTY device (write_buf), and the characters
received from the device that need to be echoed back to the device
(echo_buff).

The virtual console is excluded as follows. The kernel main-
tains an array of structures representing available virtual consoles
(struct vc vc_cons[]). We identify the target console by
traversing this array and comparing the number of each console
against the number of the target console. We then use the identified
virtual console structure to access the TTY subsystem associated
with the console and clear the memory of all buffers of the TTY
subsystem. In our experiments, we did not find any information
buffered in the console driver. Finally, we obtain the physical ad-
dresses of the TTY buffers and send the addresses along with buffer
sizes to the host service.

Excluding pseudo terminals is slightly more complex than ex-
cluding virtual consoles because we must also sanitize the pseudo
terminal driver a.k.a pty. The pseudo terminal driver is a special-
ized inter-process communication channel consisting of two coop-
erating virtual character devices: pseudo terminal master (ptm)
and pseudo terminal slave (pts). Data written to the ptm is read-
able from the pts and vice-versa. Therefore, in a terminal emula-
tor, a parent process can open the ptm end of the pty and control
the I/O of its child processes that use the pts end as their terminal
device i.e. stdin, stdout, and stderr streams. Both pts and
ptm devices are associated with separate instances of TTY subsys-
tems. After identifying the TTY subsystem instances of both de-
vices, the rest of the operations are similar to operations involved
in excluding a virtual console.

In addition, sensitive data may persist in the TTY subsystem
buffers even after they are deallocated. Thus, to prevent such data
from being checkpointed, we modify functions that deallocate such
buffers to clear the buffers prior to deallocation.

Experiments.
We performed the following two experiments. In the first exper-

iment, we ran an xterm terminal application, entered a string into
the xterm prompt, and checkpointed the VM. The string appeared
in the .sav file 6 times. After clearing the memory of xterm
and its child process bash, the string appeared in the .sav file 3
times. After zeroing out xterm, bash, and the associated TTY
buffers, the string no longer appeared in the file.

In the second experiment, we used xterm to run the “su” pro-
gram which is used to gain root privileges, entered the password
into the su’s prompt, and created a checkpoint. The string ap-
peared twice. Clearing xterm, bash, and su processes had no
effect on the number of appearances. Once we cleared the TTY
buffers, the string disappeared.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of SPARC on a num-

ber of applications that may process sensitive information: Firefox
web browser, Thunderbird email client, Evince document viewer,
Gedit text editor, OpenOffice Writer word processor, Skype VOIP
application, Gnote desktop notes software, and xterm terminal em-
ulator. All experiments were conducted on a host system with
Intel Dual CPU 2.26GHz processor, 2GB of RAM, and Ubuntu
Linux 10.04 kernel version 2.6.32, and a guest VM with 800MB of
memory, a single processor, and Ubuntu Linux 9.10 kernel version
2.6.31.

Tables 1(a) and 1(b) give the execution time when perform-
ing checkpointing using VirtualBox’s default mechanism and us-
ing SPARC, respectively. Each data point reported is an average of
execution time over 5 runs. To prevent one run from affecting the
performance of subsequent runs, we deleted the previous check-
point and rebooted the VM before we start a new run.

Note that the time it takes for VirtualBox to perform checkpoint-
ing depends on the number of memory pages that are dirty; the
more pages are dirty, the longer time the checkpointing is per-
formed. In our experiments, prior to checkpointing, we run a pro-
gram which allocates large amounts of memory and fills the mem-
ory with random data and then start the application that we want to
exclude. Simultaneously, other typical Linux system processes are
also running inside the VM. The average size of .sav files after
checkpointing is around 630 MB.

The column heading “Operations” in these two tables gives the
various operations performed. In particular, in Table 1(b), opera-
tions 1-12 and 13-18 are conducted by the guest and host services
to perform checkpointing respectively, operations 19-21 are per-
formed by the guest service to restore the VM. Rows 22 and 23
in Table 1(b) give the overall checkpointing time and the overall
restoration time, respectively. Note that, because some of the oper-
ations are performed in parallel by the guest and the host service,
the numbers in row 22 are slightly higher than the actual execution
time.

Observe from Tables 1(a) and 1(b) that, SPARC imposes
0.5%−7.0% overhead on checkpointing, 1.4%−2.5% overhead on
restoration, and 1%− 5.3% of overall overhead. The overheads of
SPARC can be further reduced by using system-specific optimiza-
tions. For example, in VirtualBox the overhead of communication
between host and guest services can likely be reduced by using the



Operations Execution Time (second)
Firefox Thunderbird Evince Gedit OpenOffice Skype Gnote Xterm

Checkpointing 16.13 16.38 16.91 16.65 15.76 16.59 17.18 17.40
Restoration 10.45 12.18 13.02 9.91 10.49 10.30 9.97 12.05

(a)
Operations Execution Time (second)

Firefox TB Evince Gedit OO Skype Gnote Xterm
1 Receive checkpoint notification from host 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Identify processes running on a terminal N/A N/A N/A N/A N/A N/A N/A 0.03
3 Freeze all user processes 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
4 Get physical page addresses of the process 0.11 0.10 0.10 0.10 0.08 0.08 0.09 0.14
5 Get page cache pages of the process 0.04 0.03 0.04 0.05 0.03 0.04 0.03 0.06
6 Get physical addresses of TTY buffers N/A N/A N/A N/A N/A N/A N/A 0.03
7 Get physical addresses of pipe buffers 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 Get physical addresses of socket buffers 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03
9 Send physical address information to host 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 Notify host service that all addresses 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

were sent
11 Receive notification that snapshot 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00

is complete
12 Unfreeze processes 0.04 0.03 0.04 0.04 0.05 0.04 0.03 0.02
13 Send checkpoint notification to the 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

guest service
14 Receive physical addresses from 0.35 0.30 0.34 0.32 0.29 0.32 0.30 0.40

the guest service
15 Receive notification that addresses were sent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
16 Create a checkpoint with the process excluded 15.96 16.20 16.48 17.25 15.76 16.08 16.61 17.02
17 Notify the guest that the checkpointing 0.10 0.10 0.05 0.10 0.09 0.08 0.11 0.10

is completed
18 Receive notification that the checkpointing 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04

is completed
19 Kill the excluded process 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 Flush the page cache 0.11 0.11 0.10 0.07 0.14 0.12 0.07 0.08
21 Unfreeze processes 0.10 0.08 0.09 0.11 0.09 0.05 0.08 0.05
22 Checkpointing (Overall) 16.70 16.82 17.15 17.92 16.40 16.72 17.26 17.97
23 Restoration (Overall) 10.71 12.41 13.26 10.13 10.76 10.52 10.17 12.22

(b)

Table 1: (a) Execution time for performing checkpointing using VirtualBox’s checkpointing mechanism. (b) Execution time for
performing checkpointing using SPARC.

Host-Guest communication mechanism. This however, comes with
cost of added implementation complexity.

5. RELATED WORK
A large body of literature considers checkpointing and replaying

the execution of processes, as means for intrusion detection, debug-
ging, process migration, and fault tolerance [5, 15, 16, 23, 26, 34,
28, 10, 25, 41, 6, 27, 13, 47, 48]. However, none of them exam-
ine the data lifetime implications of checkpointing or replaying the
execution.

Chen et al. [7] proposed a mechanism called Overshadow, which
protects the memory of applications from the operating system, by
encrypting the memory of applications when switching to the sys-
tem context. Our approach, on the other hand, focuses on eliminat-
ing sensitive information from the checkpoints which include data
from both the user-level applications and the system.

Features protecting virtual disk, memory, and checkpoints have
found their way into research prototypes as well as commercial vir-

tualization products. Garfinkel et al. [18] developed a hypervisor-
based trusted computing platform that uses trusted hardware fea-
tures to permit systems with varying security requirements to exe-
cute side-by-side on the same hardware platform. The platform’s
privacy features include encrypted disks and the use of a secure
counter to protect against file system rollback attacks in which the
state of a file is rolled back. [20] and [2] also suggested encrypt-
ing checkpoints. However, encrypting checkpoints will not prevent
sensitive information stored in these checkpoints from reappear-
ing in the memory when the VM is restored. VMware ACE [2],
VMware Infrastructure [44], and VirtualBox [33] allow users to ex-
clude the entire memory from being checkpointed. However, none
of them provide a level of granularity that we do by selectively ex-
cluding processes from the checkpointed memory.

Issues related to data lifetime have also been addressed in prior
efforts. Chow et al. [8] and Garfinkel et al. [17] discussed in depth
the problem of sensitive data being stored in memory, and observed
that the sensitive data may linger in memory for extended periods



and hence may be exposed to compromise. [17] also proposed to
encrypt sensitive information in the memory and clear the sensi-
tive information by simply discarding the key. However, encrypt-
ing sensitive information in memory can add significant overheads
to access the information and may still expose sensitive informa-
tion if the VM is checkpointed at the moment when some program
decrypts the sensitive information. Patrick et al. [36] outlined a
set of security requirements for reusing deallocated memory re-
sources without risk of exposing sensitive information that may
linger in memory i.e. the object reuse problem. Our approach
goes beyond the scope of object reuse problem by also consider-
ing sensitive memory that has not been deallocated. In [9], authors
proposed a multi-level approach to clearing deallocated memory
at the application, compiler, library, and system levels. A similar
mechanism is included in Windows operating systems, which uses
system idle time to clear deallocated memory pages [40]. Also,
in Unix systems, it is common to clear memory before reuse [17].
However, simply clearing deallocated memory does not solve our
problem because memory pages that have not been deallocated may
contain sensitive information and such information may be check-
pointed. As a result, SPARC also clears the memory pages of the
excluded processes in checkpoints. Selectively clearing memory
pages during checkpointing is much more challenging than scrub-
bing only deallocated memory because multiple processes may
share the same memory pages (e.g. shared libraries) and we must
ensure that excluding one process will not affect other processes
when the VM is restored.

Davidoff et al. [12] retrieved clear text passwords from the phys-
ical memory of a Linux system. Their work aimed to show that
the physical RAM may retain sensitive information even after the
system has been powered off and the attacker with physical ac-
cess to the system can steal information through cold boot memory
dumping attacks. However, with checkpoints, the problem is sig-
nificantly more severe: in the RAM, the amount of time the sensi-
tive information persists in the memory after the machine is pow-
ered off is limited by the RAM’s ability to retain information in
absence of power. Also, the checkpoints are saved to the disk and
the information stored in the checkpoints can persist for long time.
In addition, they assume that the attacker has physical access to the
system, but we do not.

6. CONCLUSIONS AND FUTURE WORK
This paper presents SPARC, a security and privacy aware VM

checkpointing mechanism, which enables users to selectively ex-
clude processes and terminal applications that contain users’ con-
fidential and private information from being checkpointed. SPARC
helps minimize the lifetime of confidential information by prevent-
ing unintended checkpointing of process-specific memory contents.
We have implemented a prototype of SPARC on the VirtualBox hy-
pervisor and Linux VM and tested it over a number of applications.
Our preliminary results show that SPARC poses only 1% − 5.3%
of overhead with common application workloads.

In the future, we plan to extend SPARC to exclude confidential
disk information from being checkpointed and develop techniques
to exclude only particular data (e.g. the credit card information or
specific emails) from being checkpointed, instead of excluding the
entire process. The challenge is how to clear the data segment of a
process without causing the process to crash after restoration. We
will also investigate techniques to handle the case where exclud-
ing a process from being checkpointed may affect its parent/child
processes and other processes that communicate with the process
being excluded through e.g. files, sockets, and pipes. Such pro-
cesses may receive information from the process being excluded

and hence may contain sensitive information. We plan to detect
such processes using the approach given in [49] and exclude them
from being checkpointed if they are non-system-critical processes.

In addition, we will design VMs in which the state of each pro-
cess is cleanly encapsulated. This would help avoid scrubbing
process-specific information from disparate locations in OS mem-
ory. Another research avenue is to investigate process containers
that can tightly isolate the entire state of a process and hence sim-
plify the task of identifying and destroying sensitive information.
Furthermore, we plan to implement SPARC as a kernel module,
which will enable us to exclude processes without modifying the
guest kernel.

Finally, SPARC assumes that the hypervisor and the VM have ex-
isting runtime protection mechanisms against malicious intrusions
and focuses on exclusion of confidential process information from
checkpoints. We will identify potential attacks that may specif-
ically target SPARC to hide the attacker’s activities and develop
counter-measures.
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