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Abstract— Content replication and distribution is an effective technology to re-
duce the response time for web accesses and has been proven quite popular among
large Internet content providers. However, existing content distribution systems as-
sume a store-and-forward delivery model and is mostly based on static content. This
paper describes the design, implementation, and initial evaluation of a network re-
source management system for real-time Internet content distribution called Sago,
which provides facilities to provision and allocate network resources so that multiple
bandwidth-guaranteed and fault-tolerant multicast connections can be multiplexed
on a single physical network. Sago includes a novel network resource mapping algo-
rithm that takes into account both physical network topology and dynamic traffic de-
mands, a network-wide fault tolerance mechanism that supports both node-level and
link-level fault tolerance, and a hierarchical network link scheduler that provides per-
formance protection among multicast connections sharing the same physical network
link. Moreover, Sago does not require any IP multicasting support from underlying
network routers because it performs application-level multicasting. The technologies
underlying Sago are important building blocks for real-time content distribution net-
works, end-to-end quality of service guarantee over global corporate intra-nets, and
application-specific adaptation of wide-area network services.

Keywords— Content Distribution Networks, Application-Level Multicasting, Net-
work Resource Mapping, Hierarchical Link Scheduling, Fast Network Restoration
and Reliable Multicast

I. INTRODUCTION

An emerging information technology (IT) trend in today’s corporate
enterprises is to out-source computing and communication services so
as to focus on the development of business logic functions that are the
core competence and that have the highest profit margins and barriers
of entry. This is why a wide varieties of service providers are sprout-
ing out in the Internet space in the recent years, ranging from basic
connectivity (ISP) and storage management (SSP) to end-to-end appli-
cation deployment and hosting (ASP). The central technical problem
that all xSPs face is how to multiplex multiple logical resource enti-
ties, each corresponding to a distinct customer, on a single physical
resource in a way that conforms to individual customer’s service level
agreement (SLA) and that at the same time achieves the highest system
utilization efficiency. This paper focuses specifically on resource vir-
tualization techniques for wide-area network resources and describes
the design, implement, and evaluation of an real-time content delivery
network management system called Sago, which allocates, provisions,
and manages application-level multicast connections on a single physi-
cal network such that each multicast connection could have its distinct
quality of service (QoS) guarantee in terms of network bandwidth.

Despite extensive research efforts on network QoS in the past decade,
the actual impacts of these efforts on commercial LAN and WAN de-
vices appear to be relatively minor. In particular, the holy grail of end-
to-end network QoS guarantee remains largely elusive. For network ap-
plications to enjoy end-to-end latency/bandwidth guarantee over wide-
area packet networks, the only available alternatives are (1) reserving
a dedicated virtual circuit on ATM networks (or in general MPLS-
capable networks) or (2) over-provisioning the underlying network. (2)
is clearly too expensive while (1) is too cumbersome and inflexible to
set up and manage in practice. In the Sago project, we start with a
baseline network, which could be a physical network or a logical net-
work each of whose links is an ATM permanent virtual circuit (PVC),

and develop a fully operational network management system that can
create multicast connections with bandwidth guarantee on demand for
distribution of real-time content.
Sago consists of two components, a global resource manager (GRM),

which oversees the allocation of node and link resources on the base-
line network, and a local packet processing engine (LPPE), which is
placed at each baseline network node and performs actual resource us-
age control and management at run time. In Sago, users can request a
real-time multicast connection and specify it as follows:
• A data sender and a set of data receivers,
• The network bandwidth requirement,
• The transport mode, which indicates whether data should be trans-
ported in the reliable mode, and
• The reliability requirement in terms of whether network redundancy
is called for.
Given such a request, the GRM allocates physical link and node re-
sources on the baseline network to meet the request’s specification such
that as many connection requests can be supported in the future as pos-
sible. The GRM then configures the LPPE on the baseline network
nodes that are chosen to implement the given multicast connection, by
setting up appropriate routing and QoS state. At run time, the LPPE dy-
namically recognizes packets that belong to this multicast connection,
enforces their resource usage according to the corresponding specifi-
cation, and invokes the associated control/data processing functions on
the packets.

The key architectural design decision of Sago is that it performs mul-
ticast routing, reliable transport and QoS enforcement completely at
the application level. As a result, it does not require any special support
from network routers. In addition, Sago provides a novel reliable multi-
cast transport service that is tightly integrated with node fault tolerance
and link fault tolerance mechanisms.

In Section 2, we review previous works in the network resource man-
agement area. In Section 3 and 4, we present the system architecture
that Sago assumes and its network resource mapping algorithm. Sec-
tion 5 describes the implementation of traffic shaping and control. Sec-
tion 6 portrays the fault tolerance scheme built into Sago. Section 7
presents preliminary performance results from the first Sago prototype.
Section 8 concludes this paper with a summary of the unique features
of Sago and an outline of on-going work in the Sago project.

II. RELATED WORK

Resource virtualization is a technique that has been applied in var-
ious aspects of computer systems design ranging from CPU, memory
system and virtual machine to more recently storage virtualization and
Internet server virtualization. The Sago project focuses on the devel-
opment of resource virtualization techniques for wide-area networks
to support bandwidth-guaranteed fault-tolerant multicast connections,
which can be used as the basis for Internet-scale distribution of real-
time content. Content distribution networks (CDN) such as Akamai
replicate Web content to minimize the user-perceived Web access la-
tency. The next evolution of CDN is real-time digital media deliv-
ery over wide-area networks. The technologies developed in the Sago
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project are readily applicable to this problem, especially its support for
bandwidth-guaranteed multicast distribution trees.

The bandwidth-guaranteed fault-tolerant multicast connections that
Sago provisions and manages can also be thought of as small-scale
overlay networks. Virtual private network (VPN) [19] is a technology
that leverages public networks to extend and connect corporate intra-
nets, with the main focus on the security and ease of deployment of
island-connecting tunnels. However, VPN does not address QoS and
reliability issues of these tunnels. Because of the great commercial suc-
cess of VPN, the Sago project intentionally leaves out the security issue
of overlay network set-up and operation, and plans to take advantage of
the advances that VPN makes in this area.

Perhaps the most well-known overlay network is M-Bone [10],
which uses tunneling to connect islands of routers that are capable of
IP multicast. Similar overlay networks for IPv6 (6-Bone) [1] and ac-
tive networks (A-Bone) [4] exist. The X-Bone project [20] recognized
the underlying similarity among these overlay networks and developed
a more general framework to facilitate the process of setting up, con-
figuring, monitoring, and managing overlay networks with application-
specific control/data planes. The X-Bone project does not address the
issue of QoS mapping and fault tolerance. Cornell’s VON project [17]
and the the IETF’s emerging VPN framework share a similar goal with
X-Bone. The Genesis project [5] at Columbia advocates the notion of
spawning networks, and supports a retrograde variant of recursion - de-
ploying parent overlays, where each parent can spawn multiple child
overlays.

The Darwin system at CMU [6] has a similar goal as Sago in that it
also focuses on the system support for user-customizable value-added
service on a baseline network. Darwin allows customized resource
management and control at network switching points and provides hi-
erarchical packet scheduling for network links. However, Darwin did
not address the network resource mapping issue. Neither did it support
node/link fault tolerance or performance isolation for overlay networks.
Argonne’s MORPHnet [2] is an overlay system that supports virtual
networks at all layers, from virtual physical, to link, to network, on
up to application. MORPHnet was designed for use in supercomputer
networks, where performance requirements necessitate low- and multi-
layer solutions. CRATO’s Supranet [8] extends this multi-layer notion
with multi-layer optimizations. Columbia’s Virtual Active Networks
(VANs) are part of the Netscript project [21] and deploy link-layer vir-
tual networks

MIT’s Resilient Overlay Network project (RON) [3] applied over-
lay network technology to the problem of Internet congestion, similar
to the Detour project at University of Washington [18], and to a less
degree to the distributed denial of service problem. Berkeley’s Sahara
project [11] also attempts to apply the overlay network technology im-
prove the performance of Internet services, but with an emphasis on
those services that are composed from multiple sites over a wide-area
network.

Kodialam and Lakshman [12], [14] proposed a minimum interfer-
ence routing scheme that is very similar to the network resource map-
ping algorithm described in Section 2.2. However, their algorithm fo-
cused only on network topology and did not take into account input
workload statistics. In addition, they did not address the performance
cost of their algorithm, which is an important issue for highly dynamic
overlay network management systems such as Sago and will be one of
the main focuses of this project.

Network path restoration has been studied extensively in the optical
transport network and ATM network literature. Kodialam and Lak-
shman [13] proposed an integer programming formulation of the N:1
shared redundancy problem for IP networks. Murakami [15], [16] for-
mulated the circuit restoration problem in ATM networks into a linear
programming problem, and found that in general path restoration is
more efficient than link-by-link restoration.
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Fig. 1. A baseline network consisting of 12 nodes that supports two multicast connections.
Multicast connection 1 consists of N12 (root), N11, N6, N10, N9, N8 (in depth-first
order), whereas multicast connection 2 consists of N1 (root), N2, N3, N8 and N9 (in
depth-first order). A single baseline network node can participate in the support of
multiple multicast connections, e.g., N8 and N9. Each multicast connection is isolated
from the others in terms of performance and reliability behavior. There is a local packet
processing engine (LPPE) associated with each baseline network node for run-time re-
source usage monitoring and control, and there is a global resource manager (GRM) to
oversee the resource allocation and usage reporting for the entire baseline network.

III. SYSTEM ARCHITECTURE

Sago assumes that there exists a baseline network with a fixed topol-
ogy and each link on the baseline network has a certain bandwidth ca-
pacity. Such a baseline network can be a physical network such as an
optical transport network, or itself a logical network such as an ATM-
enabled network with each link being a virtual circuit. In addition, on
each baseline network node, there is a dedicated Sago server (LPPE)
that performs resource usage control on packets that go through it. In
Sago, packets of a multicast connection are required to traverse through
baseline network nodes that are chosen to implement the multicast con-
nection. For example, in Figure 1, N1, N2, N3, N8, and N9 are involved
in implementing multicast connection 2, and therefore all packets from
N1 to N3 have to go through N2. Typically baseline network nodes
correspond to Internet points of presence (PoP). The LPPEs only need
to be co-located within the PoPs’ network operation center; they do not
need to be directly on the paths that connect neighboring PoPs. There-
fore, LPPEs are physically separate from Internet routers. The reason
that co-location is sufficient for Sago is because the internal local area
network within a PoP’s operation center is typically provisioned with a
much higher bandwidth than the aggregate of its external links. There-
fore, the only network resource that Sago manages is the bandwidth on
wide-area network links between PoPs.

Given a multicast connection specification, the GRM first chooses a
set of baseline network nodes and links that are equipped with sufficient
resources to meet the multicast connection’s bandwidth/reliability QoS,
and then makes necessary resource reservation requests to the LPPEs
on the selected baseline network nodes. After a multicast connection
is set up and in operation, the GRM collects resource usage informa-
tion from LPPEs and either presents them through real-time display or
stores them in persistent storage for subsequent on-demand querying.

As each baseline network node’s LPPE may support multiple mul-
ticast connections, it has to ensure that packets from each multicast
connection do not overuse the link bandwidth on the baseline network.
Therefore the LPPE needs to support link bandwidth management to
enforce network resource usage control and thus provide performance
isolation among multicast connections that are multiplexed on the same
physical nodes and links.
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Fig. 2. An example physical network topology that shows how packets belonging to a Sago
multicast connection are tunneled and routed through the underlying physical network.
In this case, N1, N4 and N7 are physical network nodes that are also baseline network
nodes each of which has an LPPE, whereas N2, N3, N5 and N6 are physical network
nodes that are hidden from the baseline network.

Unlike IP multicast, Sago supports a reliable link abstraction be-
tween a pair of baseline network nodes, with the same level of reli-
ability as TCP. Such an abstraction is particularly useful for multicast
applications that need reliable data transport. Note that bandwidth guar-
antee does not imply no packet drop, because in the presence of tran-
sient packet bursts, LPPEs still need to drop those packets that overflow
smoothing buffers.

A multicast connection is implemented as a distribution tree. Each
link of a multicast distribution tree is either implemented as a TCP con-
nection if it is a reliable link or a UDP connection if it is an unreliable
link between the LPPEs that are on the two ends of the link. Payload
packets are tunneled through the links of a multicast distribution tree.
For user hosts to inject packets into or receive packets from a Sago
multicast connection, an Sago gateway, similar to VPN gateways, is
needed to tunnel and de-tunnel packets on the transport path. Currently
Sago uses the combination of source port number and destination port
number of the TCP or UDP connections as the unique ID of a multicast
connection. In other words, within Sago, all TCP or UDP connections
used to support a multicast distribution tree use the same pair of source
port number and destination port number, which is chosen by the GRM
at the time of setting up the multicast connection. LPPEs base both
bandwidth management and packet routing on this connection ID.

There are two levels of routing in Sago. When a packet is tunneled
between two LPPEs, the packet goes through the intermediate routers
according to standard Internet routing protocol. However, the routing
decision of going from one LPPE to the next is based on the unique ID
of multicast connections and the routing table entries that the GRM sets
up in the LPPEs at initial configuration time.

For example, Figure 2 shows a simple multicast distribution tree
that consists of three network nodes, N1, N4, and N7, and two links,
one from N1 to N4 and the other from N4 to N7. The baseline net-
work link from N1 to N4 in turn passes through the physical network
path N1-N2-N3-N4, and that from N4 to N7 through N4-N5-N6-N7.
Assume that the unique network ID for this multicast connection is
< 50, 60 > (source port number and destination port number). So
packets of this multicast connection that N1 sent out have the quadru-
ple header < N1, 50, N4, 60 >. As these packets arrive at N2, they are
routed to N3 based on the unique network ID < 50, 60 >, and similarly
at N3. Eventually when these packets reach the TCP/UDP process at
N4, it makes the routing decision based on the payload packet’s header
according to a multicast connection-specific routing policy, and decides
to forward it through N7. As a result, these packets now have the header
< N4, 50, N7, 60 > when they are out of N4.

IV. NETWORK RESOURCE MAPPING

Given a multicast connection request’s specification, Sago’s network
resource mapping algorithm aims to identifying a set of baseline net-
work nodes and links that implement this multicast connection such that
as many future multicast connection requests can be admitted into the
system as possible. Given that network link bandwidth is the precious
resource, we will focus on the bandwidth issue in the following.

In Sago, a multicast connection is characterized by a sender and a set
of receivers. Let’s first consider a uni-directional unicast connection,
which is a degenerate multicast connection. The goal of the network
resource mapping algorithm is to identify a set of baseline network
nodes and links that collectively implement a given unicast connec-
tion, < s, d >. On one hand, the end-to-end latency of the baseline
network path chosen for the unicast connection, should be as small as
possible. This argues for a path with minimum hop count. On the
other hand, the loads on the links of the baseline network should be as
balanced as possible so that the number of future unicast connection
requests that are rejected because of “capacity fragmentation” is mini-
mized. For example, it is possible that a unicast connection request is
turned down because it must use a certain baseline network link, say
l, but link l does not have sufficient bandwidth. However, this lack
of link bandwidth on l is actually artificial because it could have been
avoided had the algorithm shifted some of the load on l to other links
when servicing previous connection requests. This problem is similar
to the fragmentation problem in segment-based memory management.
Therefore, our goal is to develop a network resource mapping algorithm
that constantly maintains a balance among the baseline network links’
loads in order to support the maximal number of unicast connection
requests that the baseline network theoretically can.

A more careful examination of this problem reveals that the notion
of load balance is not as straightforward as in other computer system
resources, such as CPU or disk. The key observation is that given a
network topology, certain links are required to shoulder more load than
others, assuming that each possible pair of nodes in the network are
equally likely to be the source and destination pair of a network link
request. Therefore, it may not be a good idea for the network resource
mapping algorithm to attempt to equalize the residual bandwidth of
each baseline network link. In other words, load balance does not nec-
essarily mean equal residual link bandwidth in this context.

The goal is thus to identify the impact of choosing a baseline network
link to satisfy a unicast connection request on the available bandwidth
of each pair of baseline network nodes. The mincut of a pair of nodes x
and y, mincut(x, y), represents the set of links that render x and y dis-
connected when they are removed. The maximum flow value between
x and y, maxflow(x, y), is the sum of the residual bandwidth of the
links in mincut(x, y), and thus represent the available bandwidth be-
tween x and y. Therefore, choosing a link l to service a new unicast
connection request can potentially impact the available bandwidth of
all pairs of baseline network nodes whose mincut includes l as a mem-
ber. Once the total impact of a baseline network link on the available
bandwidth between all pairs of network nodes is known, the network
resource mapping problem is reduced to identifying a baseline network
path for a unicast connection that have the minimal total impacts on
available bandwidth.

The quantitative impact of a network link l on the available band-
width of a pair of network nodes, say x and y, is difficult to deter-
mine exactly. However, one can approximate the impact by assuming
that only links in mincut(x, y) can possibly affect maxflow(x, y).
Moreover, the degree of impact is the same as the amount of band-
width taken out of the residual bandwidth of link l when it is chosen
to service a unicast connection request. In general neither of the above
assumptions is necessarily true because the mincut of x and y and thus
their maxflow value may be completely different when some link in the
baseline network is removed (or used up).

Since link l has the same impact on the available bandwidth of those
pairs of nodes whose mincut includes l, one can simply count the num-
ber of mincuts of which l is a member to arrive at the total impact of
l on the network, i.e., impact(l) =

∑
l∈mincut(x,y)

1. But the im-
pact on the available bandwidth of a pair of nodes should be weighted
based on its current available bandwidth, so that one can meaningfully
sum the impact on each pair of nodes into the total impact of l, i.e.
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impact(l) =
∑

l∈mincut(x,y)
1

maxflow(x,y)
. However, this formula

is assuming that each pair of baseline network nodes is equally likely
to be used to support a unicast connection and each unicast connection
request has the same bandwidth requirement. Neither assumption is
true in practice. Therefore, for each pair of baseline network nodes,
we compute its past load, which represents the total amount of band-
width demand when the pair are involved in a unicast connection in the
past. For those pairs of network nodes that are in greater demand, their
impacts should be weighted more in the total impact sum. Therefore
the final formula for total impact of link l on the network’s available
bandwidth is

impact(l) =
∑

l∈mincut(x,y)

pastload(x, y)

maxflow(x, y)
(1)

Given a unicast connection request, characterized by source S, des-
tination D and bandwidth demand B, the network resource mapping
algorithm proceeds as follows:
1. Compute the mincuts of all possible pairs of baseline network nodes
based on their residual link bandwidth.
2. Compute the total impact of each baseline network link according
to Equation (1), and use the result as the link’s weight.
3. Eliminate all links in the baseline network whose residual band-
width is smaller than B, and compute a minimum weighted shortest
path on the reduced network between S and D.
4. Decrease the residual bandwidth of all links on the weighted shortest
bandwidth by B.
5. Increase pastload(S,D) by B.
The above algorithm needs to compute all-pair mincuts for each new
unicast connection request, a very expensive operation in terms of per-
formance overhead. However, there are several possible optimizations
that can reduce this computation cost at the expense of load balancing
accuracy. One possibility is to perform step (1) and (2) in the above al-
gorithm once per M (¿ 1) unicast connection requests, rather than once
per unicast connection request.

It is interesting to note that the total impact of link l, a shown in
Equation (1), does not have anything to do with its residual link band-
width. That is, the notion of load balancing in network resource map-
ping is actually independent of the load or residual capacity of network
links! However, there are second-order effects that residual link band-
width may play a role. For example, between two links that have the
same total impact, it is preferable to choose the link with lower residual
bandwidth, because this potentially leads to less fragmentation.

To generalize the above algorithm to single-sender multiple-receiver
multicast connections, compute a weighted minimum steiner tree rather
than a weighted shortest path in Step (3) for the given multicast connec-
tion. Then in Step (4), decrease residual bandwidth of all links on the
weighted minimum steiner tree by B. Finally, Increase the past load of
each sender-receiver pair in the multicast group by B in Step (5).

V. RESOURCE USAGE CONTROL AND MANAGEMENT

A. Link Bandwidth Management

Because multiple multicast connections may share a baseline net-
work at the same time, the baseline network link bandwidth must
be carefully managed and controlled to provide performance isolation
among co-exiting multicast connections. In the Sago architecture, there
is one LPPE associated with each baseline network node, which could
have one or multiple baseline network links to neighboring baseline
network nodes. At the same time, each baseline network node and thus
its associated LPPE may participate in the support of multiple multi-
cast connections. In general, multiple multicast connections may time-
multiplex the same baseline network link.

For each out-going baseline network link, the LPPE allocates a queue
for each multicast connection supported by the baseline network link.

When a packet arrives through a network interface, if it is destined to a
local process on the LPPE, it is sent up through the protocol stack; oth-
erwise the LPPE looks at the packet’s source and destination port num-
ber to determine the appropriate queue to enqueue it. Payload packets
that go up through the protocol stack will eventually come down, and
the LPPE will process them in the same way as if they arrive through
the network interface. Control packets such as routing protocol or net-
work management packets may go up but not necessarily come down.
Sago uses a work-conserving weighted round robin algorithm to

schedule the packets of competing multicast connections that share the
same baseline network link. Since an LPPE may have multiple baseline
network links, it needs to perform hierarchical weighted round robin
packet scheduling. That is, it needs to cycle through the queues associ-
ated with each baseline network link at a different frequency, depending
on the bandwidth capacity specification of each baseline network link.
Moreover, spare bandwidth on one baseline network link cannot be re-
allocated to queues associated with another baseline network link.
Sago performs weighted round-robin scheduling by visiting the per-

connection queues periodically, and at each visit to a multicast con-
nection’s queue, it adds a credit to the queue’s balance and continues
to transmit packets from the queue until it’s balance becomes negative
or until the queue becomes empty. The credit is equal to the multipli-
cation of the multicast connection’s bandwidth reservation and a pre-
determined cycle time, which is the visiting period. A queue can carry
unspent credit over to the next cycle. However, to avoid long bursts,
Sago sets a limit on the amount of credit that is allowed to accumulate.
In this scheduling algorithm, as long as the packet scheduler can cycle
through the queues within the cycle time, each queue (and therefore
each multicast connection) is guaranteed its reserved bandwidth capac-
ity. Our prototype implementation experiences show that the weighted-
round-robin packet scheduler is able to keep up with fine-grained cy-
cle time, e.g., 50 msec, for up to 10,000 connections on standard PC
hardware. In all cases, packet forwarding becomes the performance
bottleneck long before packet scheduling does.

B. Packet Forwarding

On an LPPE, packets of a non-reliable multicast connection arrive
at an network interface, get DMAed into a buffer memory, and eventu-
ally dispatched by the packet scheduler to the corresponding network
interface. The entire process takes place inside the kernel. In addition,
to avoid network interrupt overhead, network interrupt is completely
disabled, and packet receiving, scheduling and dispatching are orga-
nized as a tight polling loop inside the kernel. Periodically the control
is transferred to a user-level process, which performs connection set-
up/tear-down and network management chore. On a Pentium-III 450
MHz machine, the packet forwarding rate of the current LPPE imple-
mentation is more than 200,000 packets/sec.

To implement a reliable link between a pair of baseline network
nodes, a separate TCP connection is set up between the associated
LPPEs for each multicast connection. Therefore packets of a reliable
multicast connection need to travel through a user-level TCP server
when passing through an LPPE. Sago chooses to implement reliable
links through TCP because it attempts to reuse the standard TCP im-
plementation in the Linux kernel. The disadvantage of this approach is
that reliable multicast packets incur a higher latency because it involves
two kernel-user protection boundary crossings. The advantage is that
Sago can leverage the buffering, retransmission, and flow control of
TCP to support reliable multicast for free. Because LPPE completely
eliminates network interrupts, running user-level TCP server processes
may cause packets to be dropped at the input interfaces because the
LPPE core does not poll the interfaces sufficiently frequently. To ad-
dress this issue, the TCP receive and send system calls are augmented
with code to poll network interfaces so that the desired interface polling
frequency is maintained even when the TCP server processes take con-
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Fig. 3. The fully redundant hardware architecture of the LPPE provides node fault tolerance
against single device, network interface, and hub failure.

trol of the CPU most of the time.

VI. FAULT TOLERANCE

Sago is designed to tolerate both single node failure and link failure
at the baseline network level. It includes a separate mechanism for node
and link fault tolerance.

A. Node Fault Tolerance

Full redundancy is built into each LPPE in that each LPPE consists of
a master and a slave device. As shown in Figure 3, the master and slave
of an LPPE share two hubs to connect to the rest of the baseline net-
work. Sago uses two hubs to tolerate single hub failure. Typically hub
1 is active and hub 2 is backup. Therefore, incoming packets are auto-
matically replicated to the master and slave simultaneously. Because it
is possible that transient network interface errors may cause one device
to receive a packet that does not reach the other device, Sago cannot
assume 100% reliable packet replication.

Periodic heartbeat messages are exchanged through both hubs be-
tween the master and slave to keep an eye of each other’s health. If the
master detects the slave is dead, it sends an alarm message to the system
administrator. If the slave detects the master is dead, it sends an alarm
message to the system administrator and takes over as the master. When
the slave does not receive Nhb (initially set to 10 in the current design)
consecutive heartbeat messages in a row from the master through both
hubs, there are several possibilities:
1. The master device is dead.
2. The master device’s both network interfaces are dead.
3. The slave device’s both network interfaces are dead.
4. One interface on the master and one interface on the slave are dead.
Note that a hub failure has the same effect as failure of both interfaces
connected to the hub. There are two ways to determine whether a net-
work interface is still alive: (a) by using ping to probe some well-known
hosts through the tested network interface, and (b) by checking the sta-
tus register on the network interface card. (b) is not always supported
on all network interface hardware. The slave can use either of the two
methods to probe the aliveness of its two interfaces. If both are dead,
it does nothing. If both are alive, it takes over as the master. If one is
dead and the other is alive, it broadcasts the heartbeat message through
the healthy interface in the hope that the master can receive it through
the other interface. The heartbeat message should include the result of
network interface aliveness information. Cases (1) to (3) can be de-
termined by the master and slave locally. Case (4) however, requires
broadcast of heartbeat messages between the master and slave to make
sure that this failure scenario is indeed the reason why heartbeat mes-
sages cannot get through both interfaces. For Case (4), eventually the
master (slave) should remain as the master (slave) and both switch to

the healthy interface if necessary; also, the heartbeat messages need to
traverse through both hubs from this point on.

It is conceivable that loss of a sequence of heartbeat message is due
to congestion, rather than any hardware failure. In that case, both de-
vices may turn into a master. Eventually when congestion fades away,
heartbeat messages get through again. A dual-master resolution mech-
anism based on the MAC address is used to turn the device with larger
MAC back to a slave. To prevent the “dual masters” scenario from
occurring frequently due to congestion-related heartbeat message loss,
Sago dynamically adapts the value of Nhb, the threshold to start sus-
pecting that there is a failure, according to instantaneous traffic load
measured at run time.
Sago takes a process pair approach for fault recovery. That is, the

master and slave are initialized with the same starting state and exe-
cute the same software at both the kernel and user level. They are not
working in lock steps. But given the same packet stream, the critical in-
ternal states of the master and slave are tightly synchronized. The only
difference between the master and slave is that packet transmission is
suppressed at the slave except the heartbeat messages. Therefore, if
the master dies, a slave can take over as the master without any ex-
plicit state transfer, requiring only a change to an internal state variable
to indicate that it is now the master, which in turn enables the packet
transmission capability.

To maintain a reliable link between a pair of LPPEs, each of which
consists of a master and a slave, requires careful synchronization be-
tween the master and slave to preserve TCP’s reliability semantics.
First of all, when the master and slave are started, they are given the
same seed variable that is used to generate subsequent TCP sequence
numbers. This guarantees that the master and slave always use the same
starting sequence numbers for new connections. Second, instead of
simply dropping all TCP packets, the slave forwards the ACK sequence
number to the master, which can ACK a sequence number if and only if
it receives an ACK from the slave that acknowledges the same sequence
number. Of course, this additional synchronization constraint should be
turned off when the slave is determined to be dead. These two modifica-
tions guarantee that the master and slave of each end of a TCP connec-
tion maintain the same session state for that TCP connection, including
both sequence numbers and buffered segments. Therefore, a slave can
immediately take over as the master without losing any TCP packets,
thus upholding TCP’s reliability guarantees. Because modification of
an LPPE’s critical state, such as routing state and bandwidth reserva-
tion requests, is triggered by messages sent through TCP, preserving
TCP’s semantics has the nice side effect of ensuring that connection-
related states of the master and slave are always kept consistent with
each other.

B. Link Fault Tolerance

A multicast connection request specification includes a reliability at-
tribute in terms of link failure recovery time. To achieve comparable
fault recovery time as Sonet, 50 msec, Sago sets up a backup path for
each link path of a multicast connection that requires fast failure recov-
ery. A link path is a sequence of adjacent links on a multicast distribu-
tion tree that starts with a fork node or the root, ends with a fork or a
leaf node, and does not pass through any fork node. Given a path, there
are three general approaches to path redundancy management:
• 1+1 Redundancy: A dedicated backup path is set up for each active
path and packets are sent on both the active and backup paths.
• 1:1 Redundancy: A dedicated backup path is set up for each active
path but packets are sent only on the active paths.
• N:1 Redundancy: Multiple active paths share a backup path and
packets only sent on the active paths.
Sago adopts the N:1 Redundancy scheme to minimize the cost of link
fault tolerance. Another issue of backup path construction is whether
to use link-by-link backup or path-disjoint backup. Sago chooses path-
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disjoint backup because previous study [15] showed that path-disjoint
backup is in general more bandwidth-efficient.

To detect link failures, LPPEs on neighboring baseline network
nodes exchange heartbeat messages between themselves. Loss of
a consecutive sequence of heartbeat messages triggers an aliveness
probe, which results in either a node or a link failure indication. The
LPPE that pinpoints the failure notifies the GRM, which consults the
network resource map to identify all link paths that are affected, and
informs the LPPEs at the two ends of each of the affected link path.
When an LPPE receives such a notification from the GRM, it modifies
the low-level routing table entry corresponding to each affected link
path to follow its backup path. The routing state of the LPPEs on the
backup paths are typically set up appropriately at the network initial-
ization time.

Finding an optimal shared redundant path for multiple active paths
has been shown to be NP hard [9]. Sago chooses a heuristic algorithm
called the shared backup-path construction (SBC) algorithm to solve
this problem. Each link path in a multicast distribution tree is serviced
by an active and a backup bath. Given a new link path request, the SBC
algorithm needs to reserve the request’s bandwidth demand on each
link of the chosen active path. However, it does not always need to re-
serve the same amount on the links of the backup path, because backup
link bandwidth can be shared among multiple link paths. If the active
path of a link path request R1 shares at least one baseline network link
with that of another link path request R2, then R1 and R2 are conflict-
ing and the bandwidth reservation on the baseline network links that
R1 and R2 both use as part of the backup path should be the sum of
the bandwidth demands of R1 and R2, i.e., no redundancy sharing. On
the other hand, if the active paths of R1 and R2 are disjoint, then the
bandwidth reservation on the links that R1 and R2 both use as part of
the backup path is the maximum of the bandwidth demands of R1 and
R2. Therefore, for a baseline network link that serves on the backup
path of a set of link path requests, the total amount of backup band-
width reservation on this link is the maximum of the bandwidth sums
of all subsets of these link path requests in which at least one member
is conflicting with all the rest. Give a set of active link paths to be pro-
tected, the heuristic SBC algorithm builds up the backup path for each
active path one by one as follows:
1. Take out the active path being considered, say P , from the baseline
network to form a reduced graph so that the backup path to be con-
structed is guaranteed to be path-disjoint with P .
2. Apply a weighted shortest path algorithm on the reduced graph to
find a backup path for P , where the weight of each link on the backup
path is the increase in the link’s backup bandwidth reservation as a
result of including this link as part of the backup path for P .
3. Update the residual bandwidth and backup bandwidth of the links
on the chosen backup path.
The incremental bandwidth cost for including a baseline network link
as P ’s backup path is calculated by first identifying all the active paths
that are conflicting with P and that also include the link under consider-
ation into their backup path, then summing up the bandwidth demands
of these active paths and P ’s, and finally subtracting this sum from the
backup bandwidth already reserved on the link. If the subtraction re-
sult is negative, the incremental cost is zero; otherwise the subtraction
result is the incremental cost. By using the bandwidth increment as the
weight, the weighted shortest path algorithm is more likely to include
those baseline network links that allows backup bandwidth sharing. For
the active path P whose backup path is being constructed, these are the
links that are used as part of the backup path of those link path requests
whose active path is not conflicting with P .

VII. CONCLUSION

As content replication and delivery moves to the center stage, dis-
tribution of real-time content over the Internet is an obvious next

step. Sago provides the essential tool to allocate, route and manage
application-level multicast connections that are reliable, bandwidth-
guaranteed, and fault-tolerant. Because Sago greatly simplifies the pro-
cess of network resource provisioning, it renders possible the business
model of bandwidth retailing, which allows a specialized content deliv-
ery network service provider to re-sell wide-area guaranteed-QoS mul-
ticast connections to Internet content providers on an on-demand basis.
The novel features of the Sago system include a network resource map-
ping algorithm that takes into account network topology and dynamic
input request distribution when balancing the load on network links, a
comprehensive fault-tolerance mechanism that can tolerate single link
and node failure, and a highly efficient packet forwarding engine that
also supports hop-by-hop reliable data transport. Measurements on a
fully operational Sago prototype show that the average packet latency
is under 0.06 msec even at input loads as high as 80 Mbits/sec.

Currently we are working on the gateway subsystem that interfaces
between the data sender/receiver at the end user site and the peripheral
LPPEs on the content distribution network. We are also embarking on a
comprehensive evaluation of the effectiveness of the proposed network
resource mapping algorithm and the shared backup-path construction
algorithm using a wide variety of network topologies and input request
distributions. Because Sago makes very little assumption on the base-
line network, the Sago technology could also be applied to the manage-
ment of optical transport networks, with the major difference being the
basic unit of resource allocation for the latter is an optical channel of
fixed bandwidth. Finally, we are generalizing Sago to a full-scale over-
lay network management system, which allows a physical network to
support an arbitrary number of logical overlay networks each of which
is specified with any combination of attributes that are traditionally as-
sociated with a physical network, e.g., topology, link bandwidth, link
reliability, and even control-plane/data-plane processing protocols.
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